Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 1, 40 - 45, 30.04.2017

Abstract

References

  • [1] Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, (1990).
  • [2] Adámek, J., Reiterman, J., Cartesian Closed Hull for Metric Spaces. Comment. Math. Univ. Carolinae. 31 (1990), 1-6.
  • [3] Baran, M., Separation Properties, Indian J. Pure Appl. Math. 23 (5) (1991), 333-341.
  • [4] Baran, M., Separation Properties in Topological Categories, Math. Balkanica. 10 (1996), 39-48.
  • [5] Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, Acta Math. Hungar. 80 (1998), 211-224.
  • [6] Baran, M., T3 and T4 -Objects in Topological Categories, Indian J.Pure Appl. Math. 29 (1998), 59-69.
  • [7] Fre´chet, M.,Sur quelques points du calcul fonctionnel, Rend. Palermo. 22 (1906), 1-74.
  • [8] Herrlich, H., Topological Functors, Gen. Topology Appl. 4 (1974), 125-142.
  • [9] Johnstone, P. T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York, (1977).
  • [10] Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., (1997).
  • [11] Lowen, R., Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226.
  • [12] MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic. Springer, New York, (1992).
  • [13] Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, Comment. Math. Univ. Carolinae. 41 (2000), 559-573.
  • [14] Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, (1988).
  • [15] Wilson, W. A., On Quasi-Metric Spaces, Amer.J. Math. 53 (1931), 675-684.

T_1 Extended Pseudo-Quasi-Semi Metric Spaces

Year 2017, Volume: 5 Issue: 1, 40 - 45, 30.04.2017

Abstract

In this paper, we characterize a T1 extended pseudo-quasi-semi metric space at p and a T1 extended
pseudo-quasi-semi metric space and investigate the relationships between them. Finally, we compare
each of T1 extended pseudo-quasi-semi metric spaces with the usual T1.

References

  • [1] Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, (1990).
  • [2] Adámek, J., Reiterman, J., Cartesian Closed Hull for Metric Spaces. Comment. Math. Univ. Carolinae. 31 (1990), 1-6.
  • [3] Baran, M., Separation Properties, Indian J. Pure Appl. Math. 23 (5) (1991), 333-341.
  • [4] Baran, M., Separation Properties in Topological Categories, Math. Balkanica. 10 (1996), 39-48.
  • [5] Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, Acta Math. Hungar. 80 (1998), 211-224.
  • [6] Baran, M., T3 and T4 -Objects in Topological Categories, Indian J.Pure Appl. Math. 29 (1998), 59-69.
  • [7] Fre´chet, M.,Sur quelques points du calcul fonctionnel, Rend. Palermo. 22 (1906), 1-74.
  • [8] Herrlich, H., Topological Functors, Gen. Topology Appl. 4 (1974), 125-142.
  • [9] Johnstone, P. T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York, (1977).
  • [10] Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., (1997).
  • [11] Lowen, R., Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226.
  • [12] MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic. Springer, New York, (1992).
  • [13] Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, Comment. Math. Univ. Carolinae. 41 (2000), 559-573.
  • [14] Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, (1988).
  • [15] Wilson, W. A., On Quasi-Metric Spaces, Amer.J. Math. 53 (1931), 675-684.
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tesnim Meryem Baran This is me

Muammer Kula

Publication Date April 30, 2017
Submission Date January 20, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Baran, T. M., & Kula, M. (2017). T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Mathematical Sciences and Applications E-Notes, 5(1), 40-45.
AMA Baran TM, Kula M. T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Math. Sci. Appl. E-Notes. April 2017;5(1):40-45.
Chicago Baran, Tesnim Meryem, and Muammer Kula. “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”. Mathematical Sciences and Applications E-Notes 5, no. 1 (April 2017): 40-45.
EndNote Baran TM, Kula M (April 1, 2017) T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Mathematical Sciences and Applications E-Notes 5 1 40–45.
IEEE T. M. Baran and M. Kula, “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”, Math. Sci. Appl. E-Notes, vol. 5, no. 1, pp. 40–45, 2017.
ISNAD Baran, Tesnim Meryem - Kula, Muammer. “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”. Mathematical Sciences and Applications E-Notes 5/1 (April 2017), 40-45.
JAMA Baran TM, Kula M. T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Math. Sci. Appl. E-Notes. 2017;5:40–45.
MLA Baran, Tesnim Meryem and Muammer Kula. “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”. Mathematical Sciences and Applications E-Notes, vol. 5, no. 1, 2017, pp. 40-45.
Vancouver Baran TM, Kula M. T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Math. Sci. Appl. E-Notes. 2017;5(1):40-5.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.