Year 2019, Volume 7 , Issue 2, Pages 139 - 148 2019-10-15

S-generalized Mittag-Leffler Function and its Certain Properties

Praveen AGARWAL [1] , Aysegul CETİNKAYA [2] , Shilpi JAİN [3] , İ. Onur KIYMAZ [4]


In 2014, S-generalized beta function which consist of
seven parameters, defined and studied by Srivastava et al. [H. M.
Srivastava, P. Agarwal and S. Jain, Generating functions for the
generalized Gauss hypergeometric functions, Appl. Math. Comput., 247 (2014), pp. 348-352]. In this paper, by using S-generalized
beta function, we introduce a new generalization of Mittag-Leffler
function. This new generalization of Mittag-Leffler function is consist of eleven parameters. We also investigate some of its certain
properties such as integral representations, recurrence formulas and
derivative formulas by using classical and fractional derivatives.
Furthermore, we determine its Mellin, beta and Laplace integral
transforms.
  
Mittag-Leffler function, generalized beta function, fractional derivative
  • 1. R. P. Agarwal and P. Agarwal, Extended Caputo fractional derivativeoperator, Adv. Stud. Contemp. Math., 25:3 (2015), pp. 301-316.2. P. Agarwal, M. Chand and S. Jain, Certain integrals involving generalized Mittag-Leffler functions, Proc. Nat. Acad. Sci. India Sect.A, 85:3 (2015), pp. 359-371.3. P. Agarwal, J. Choi, S. Jain and M. M. Rashidi, Certain integrals associated with generalized Mittag-Leffler function, Commun. KoreanMath. Soc, 32:1 (2017), pp. 29-38.4. P. Agarwal, J. Choi and R. B. Paris, Extended Riemann-Liouvillefractional derivative operator and its applications, J. Nonlin. Sci.Appl., 8:5, (2015), pp. 451-466.5. P. Agarwal and J. J. Nieto, Some fractional integral formulas forthe Mittag-Leffler type function with four parameters, Open Math.,13:1 (2015), pp. 537-546.6. P. Agarwal, S. V. Rogosin and J. J. Trujillo, Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions, Proc. Indian Acad. Sci. Math. Sci., 125:3 (2015), pp. 291-306.7. P.L. Butzer and S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal., 3 (1997), pp. 325-376.8. R. F. Camargo, E. Capelas de Oliveira and J. Vas, On the generalizedMittag-Leffler function and its application in a fractional telegraphequation, Math. Phys. Anal. Geom., 15:1 (2012), pp. 1-16.9. M. Kurulay and M.Bayram, Some properties of the Mittag-Lefflerfunctions and their relation with the Wright function, Adv. Differ. Equ., 2012:181 (2012), https://doi.org/10.1186/1687-1847-2012-181.10. M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extensionof Euler’s beta function, J. Comput. Appl. Math., 78 (1997), pp.19-32.11. M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris,Extended hypergeometric and confluent hypergeometric functions,Appl. Math. Comput., 159 (2004), pp. 589-602.12. R. Gorenflo, A. Kilbas, F. Mainardi and S. Rogosin, Mittag-Lefflerfunctions: Related topics and applications, Springer, Berlin, 2010.13. R. Hilfer, Fractional time evolution, in: R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific PublishingCompany, Singapore, New Jersey, London and Hong Kong, 2000.14. R. Hilfer and H. Seybold, Computation of the generalized MittagLeffler function and its inverse in the complex plane, Integral Transform. Spec. Funct., 17 (2006), pp. 637-652.15. A. A. Kilbas and M. Saigo, On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, IntegralTransform. Spec. Funct., 4 (1996), pp. 355-370.16. A. A. Kilbas, M. Saigo and R. K. Saxena, Generalized MittagLeffler function and generalized fractional calculus operators, Integral Transform. Spec. Funct., 15 (2004), pp. 31-49.17. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006.18. M.-J. Luo, G. V. Milovanovic and P. Agarwal, Some results on theextended beta and extended hypergeometric functions, Applied Mathematics and Computation, 248 (2015), pp. 631-651.19. E. Ozergin, M.A. ¨ Oarslan and A. Altın, ¨ Extension of gamma, betaand hypergeometric function, J. Comput. Appl. Math., 235 (2011),pp. 4601-4610.20. M. A. Ozarslan and B. Yılmaz, ¨ The extended Mittag-Lefflerfunction and its properties, J. Inequal. Appl., 2014:85 (2014),https://doi.org/10.1186/1029-242X-2014-85.21. R. K. Parmar, A new generalization of Gamma, Beta, hypergeometric and confluent hypergeometric functions, Matematiche (Catania),69 (2013), pp. 33-52.22. T. R. Prabhakar, A singular integral equation with ageneralizedMittag-Leffler function in the kernel, Yokohama Math.J., 19 (1971), pp. 7-15.23. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach,Yverdon et al. (1993).24. M. Sharma and R. Jain, A note on a generalized M-series as a specialfunction of fractional calculus, Fract. Calc. Appl. Anal., 12:4 (2009),pp. 449-452.25. I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill,New Delhi, 1979.26. M. R. Spiegel, Theory and Problems of Laplace Transforms,Schaums Outline Series, McGraw-Hill, New York, 1965.27. H. M. Srivastava, P. Agarwal and S. Jain, Generating functions forthe generalized Gauss hypergeometric functions, Appl. Math. Comput., 247 (2014), pp. 348-352.28. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric Series, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley &Sons, Inc.], New York, 1985.29. H. M. Srivastava, R. Jain and M. K. Bansal, A study of the Sgeneralized Gauss hypergeometric function and its associated integraltransforms, Turkish J. Anal. Number Theory, 3 (2015), pp. 101-104.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0001-7556-8942
Author: Praveen AGARWAL
Institution: Anand-ICE
Country: India


Orcid: 0000-0001-7498-328X
Author: Aysegul CETİNKAYA (Primary Author)
Institution: Ahi Evran University
Country: Turkey


Orcid: 0000-0003-1770-5309
Author: Shilpi JAİN
Institution: Poornima College of Engineering
Country: India


Orcid: 0000-0003-2375-0202
Author: İ. Onur KIYMAZ
Institution: Ahi Evern University
Country: Turkey


Supporting Institution Department of Science \& Technology(DST), India and Science \& Engineering Research Board (SERB), India
Project Number INT/RUS/RFBR/P-308 and TAR/2018/000001
Thanks The research was supported by the Department of Science \& Technology(DST), India (No:INT/RUS/RFBR/P-308) and Science \& Engineering Research Board (SERB), India (No:TAR/2018/000001).
Dates

Publication Date : October 15, 2019

Bibtex @research article { mathenot578638, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2019}, volume = {7}, pages = {139 - 148}, doi = {10.36753/mathenot.578638}, title = {S-generalized Mittag-Leffler Function and its Certain Properties}, key = {cite}, author = {AGARWAL, Praveen and CETİNKAYA, Aysegul and JAİN, Shilpi and KIYMAZ, İ. Onur} }
APA AGARWAL, P , CETİNKAYA, A , JAİN, S , KIYMAZ, İ . (2019). S-generalized Mittag-Leffler Function and its Certain Properties. Mathematical Sciences and Applications E-Notes , 7 (2) , 139-148 . DOI: 10.36753/mathenot.578638
MLA AGARWAL, P , CETİNKAYA, A , JAİN, S , KIYMAZ, İ . "S-generalized Mittag-Leffler Function and its Certain Properties". Mathematical Sciences and Applications E-Notes 7 (2019 ): 139-148 <https://dergipark.org.tr/en/pub/mathenot/issue/49271/578638>
Chicago AGARWAL, P , CETİNKAYA, A , JAİN, S , KIYMAZ, İ . "S-generalized Mittag-Leffler Function and its Certain Properties". Mathematical Sciences and Applications E-Notes 7 (2019 ): 139-148
RIS TY - JOUR T1 - S-generalized Mittag-Leffler Function and its Certain Properties AU - Praveen AGARWAL , Aysegul CETİNKAYA , Shilpi JAİN , İ. Onur KIYMAZ Y1 - 2019 PY - 2019 N1 - doi: 10.36753/mathenot.578638 DO - 10.36753/mathenot.578638 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 139 EP - 148 VL - 7 IS - 2 SN - -2147-6268 M3 - doi: 10.36753/mathenot.578638 UR - https://doi.org/10.36753/mathenot.578638 Y2 - 2019 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes S-generalized Mittag-Leffler Function and its Certain Properties %A Praveen AGARWAL , Aysegul CETİNKAYA , Shilpi JAİN , İ. Onur KIYMAZ %T S-generalized Mittag-Leffler Function and its Certain Properties %D 2019 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 7 %N 2 %R doi: 10.36753/mathenot.578638 %U 10.36753/mathenot.578638
ISNAD AGARWAL, Praveen , CETİNKAYA, Aysegul , JAİN, Shilpi , KIYMAZ, İ. Onur . "S-generalized Mittag-Leffler Function and its Certain Properties". Mathematical Sciences and Applications E-Notes 7 / 2 (October 2019): 139-148 . https://doi.org/10.36753/mathenot.578638
AMA AGARWAL P , CETİNKAYA A , JAİN S , KIYMAZ İ . S-generalized Mittag-Leffler Function and its Certain Properties. Math. Sci. Appl. E-Notes. 2019; 7(2): 139-148.
Vancouver AGARWAL P , CETİNKAYA A , JAİN S , KIYMAZ İ . S-generalized Mittag-Leffler Function and its Certain Properties. Mathematical Sciences and Applications E-Notes. 2019; 7(2): 148-139.