Year 2019, Volume 7 , Issue 2, Pages 195 - 204 2019-10-15

$H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function

Oğuz YAĞCI [1]



Srivastava hypergeometric function, Integral representations, Recurrence relations
  • \bibitem{1} Agarwal, P., Some inequalities involving Hadamard‐type k‐fractional integral operators. Mathematical Methods in the Applied Sciences, (2017), no.40(11), 3882--3891. \bibitem{2} Agarwal, P., Jleli, M. and Tomar, M., Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. Journal of inequalities and applications, (2017), no.1, 55. \bibitem{3} Agarwal, P., Tariboon, J. and Ntouyas, S. K., Some generalized Riemann-Liouville k-fractional integral inequalities. Journal of Inequalities and Applications, (2016), no.1, 122. \bibitem{4} Al-Shammery, A. H., and Kalla,Shyam. L., An extension of some hypergeometric functions of two variables. Revista de la Academia Canaria de Ciencias 12 (2000),no.2, 189-196. \bibitem{5} Appell,P., Kamp\'{e} de F\'{e}riet, Fonctions Hyperg\'{e}om\'{e}triques et Hypersph\'{e}riques. Gauthier-Villars, Paris, (1926). \bibitem{6} Baleanu, D. and Agarwal, P., Certain inequalities involving the fractional-integral operators. In Abstract and Applied Analysis (2014), Hindawi. \bibitem{7} Baleanu, D., Purohit, S. D. and Agarwal, P., On fractional integral inequalities involving hypergeometric operators. Chinese Journal of Mathematics, (2014). \bibitem{8} Choi, J. and Agarwal, P., A note on fractional integral operator associated with multiindex Mittag-Leffler functions. Filomat, (2016), no.30(7), 1931--1939. \bibitem{9} Choi, J. and Agarwal, P., Some new Saigo type fractional integral inequalities and their-analogues. In Abstract and Applied Analysis (2014) Hindawi. \bibitem{10} Choi, J., Parmar,Rakesh K. and Chopra,P., The incomplete Lauricella and first Appell functions and associated properties. Honam Mathematical Journal (2014),no.3, 531-542. \bibitem{11} \c{C}etinkaya, A.,Ya\u{g}basan, M.Baki. and K\i ymaz,\.{I}.Onur., The extended Srivastava's hypergeometric function and their integral representation. J. Nonlinear sci. Appl. (2016),no.9, 4860-4866. \bibitem{12} Exton, H., On Srivastava's symmetrical triple hypergeometric function $H_{B}$. J. Indian Acad. Math. (2003),no.25, 17-22. \bibitem{13} Hasanov, A., Srivastava, Hari. M. and Turaev, M., Integral representation of Srivastava's triple hypergeometric function.Taiwanese Journal of Mathematics (2011),no.6,2751-2762. \bibitem{14} Opps, Sheldon.B., Saad, N. and Srivastava, Hari. M., Some reduction and transformation formulas for the Appell hypergeometric function\textit{\ }$ F_{2}$. J. Math. Anal. Appl. (2005),no.1 180-195. \bibitem{15} Opps, Sheldon. B., Saad, N. and Srivastava, Hari. M., Recursion formulas for Appell's hypergeometric function $F_{2}$\ with some applications to radiation field problem. Appl. Math. Comput. (2009),no.2, 545-558. \bibitem{16} Parmar, Rakesh K., Extended hypergeometric functions and associated properties. C. R. Math. Acad. Sci. Paris (2015),no.5, 421-426. \bibitem{17} Parmar, Rakesh K. and Saxena,Ram Kishore., The incomplete generalized $\tau -$ hypergeometric and second $\tau -$Appell functions. Journal of the Korean Mathematical Society (2016),no.2 363-379. \bibitem{18} Rainville, Earl. D., Special functions. Macmillan Company, New York,1960. Reprinted by Chelsea Publishing Company, Bronx, New York, 1971. \bibitem{19} Ruzhansky, M., Cho, Y. J., Agarwal, P. and Area, I. (Eds.)., Advances in real and complex analysis with applications. Springer Singapore (2017). \bibitem{20} Slater, Lucy. J., Generalized Hypergeometric Functions. Cambridge University Press. Cambridge, 1966. \bibitem{21} Srivastava, Hari. M., Hypergeometric functions of three variables.Ganita 15 (1964),no.2, 97-108. \bibitem{22} Srivastava, Hari. M. and Karlsson, Per. W., Multiple Gaussian Hypergeometric Series. Halsted Press (John Wiley and Sons), New York, 1985. \bibitem{23} Srivastava, Hari. M. and Monacha, H. L., A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1984. \bibitem{24} Srivastava, Hari. M., Some integrals representing triple hypergeometric functions . Rend. Circ. Mat. Palermo, (1967),no.2, 99-115. \bibitem{25} Srivastava, Hari. M., Relations between functions contiguous tocertain hypergeometric functions of three variables. Proc. Nat. Acad. Sci.India Sect. A, 36 (1966),no.1, 377-385. \bibitem{26} \c{S}ahin, R., Recursion Formulas for Srivastava Hypergeometric Functions. Mathematica Slovaca, 65 (2015), no:6, 1345-1360. \bibitem{27} \c{S}ahin, R. and Yağcı, O., $H_{A}^{\tau_{1}, \tau_{2}, \tau_{3}}$ Srivastava Hypergeometric Function, Mathematical Sciences and Applications E-Notes, (2018), no.6(2), 1-9. \bibitem{28} Tariboon, J., Ntouyas, S. K. and Agarwal, P., New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Advances in Difference Equations, (2015), no.1, 18. \bibitem{29} Wang, G., Agarwal, P. and Chand, M., Certain Grüss type inequalities involving the generalized fractional integral operator. Journal of Inequalities and Applications, (2014), no.1, 147. \bibitem{30} Virchenko,N., Kalla, Shyam. L. and Al-Zamel,A., Some results on a generalized hypergeometric function. Integral Transforms and Special Functions (2001),no.1, 89-100. \bibitem{31} Virchenko,N., On some generalizations of the functions of hypergeometric type. Fract. Calc. Appl. Anal. (1999), no. 3, 233-244. \bibitem{32} Zhang, X., Agarwal, P., Liu, Z. and Peng, H., The general solution for impulsive differential equations with Riemann-Liouville fractional-order $q\in(1,2)$. Open Mathematics, (2015), no.1, 13.
Primary Language en
Journal Section Articles
Authors

Author: Oğuz YAĞCI

Dates

Publication Date : October 15, 2019

Bibtex @research article { mathenot634502, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2019}, volume = {7}, pages = {195 - 204}, doi = {10.36753/mathenot.634502}, title = {\$H\_\{B\}\^\{\\tau \_\{1\},\\tau \_\{2\},\\tau \_\{3\}\}\$ Srivastava Hypergeometric Function}, key = {cite}, author = {YAĞCI, Oğuz} }
APA YAĞCI, O . (2019). $H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function. Mathematical Sciences and Applications E-Notes , 7 (2) , 195-204 . DOI: 10.36753/mathenot.634502
MLA YAĞCI, O . "$H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function". Mathematical Sciences and Applications E-Notes 7 (2019 ): 195-204 <https://dergipark.org.tr/en/pub/mathenot/issue/49271/634502>
Chicago YAĞCI, O . "$H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function". Mathematical Sciences and Applications E-Notes 7 (2019 ): 195-204
RIS TY - JOUR T1 - $H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function AU - Oğuz YAĞCI Y1 - 2019 PY - 2019 N1 - doi: 10.36753/mathenot.634502 DO - 10.36753/mathenot.634502 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 195 EP - 204 VL - 7 IS - 2 SN - -2147-6268 M3 - doi: 10.36753/mathenot.634502 UR - https://doi.org/10.36753/mathenot.634502 Y2 - 2020 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes $H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function %A Oğuz YAĞCI %T $H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function %D 2019 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 7 %N 2 %R doi: 10.36753/mathenot.634502 %U 10.36753/mathenot.634502
ISNAD YAĞCI, Oğuz . "$H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function". Mathematical Sciences and Applications E-Notes 7 / 2 (October 2019): 195-204 . https://doi.org/10.36753/mathenot.634502
AMA YAĞCI O . $H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function. Math. Sci. Appl. E-Notes. 2019; 7(2): 195-204.
Vancouver YAĞCI O . $H_{B}^{\tau _{1},\tau _{2},\tau _{3}}$ Srivastava Hypergeometric Function. Mathematical Sciences and Applications E-Notes. 2019; 7(2): 204-195.