Year 2020, Volume 8 , Issue 2, Pages 170 - 177 2020-10-15

In this paper, we first introduce a new generalization of Frank matrix. Then, we examine its algebraic structure, determinant, inverse, LU decomposition and characteristic polynomial.

..............................................................................................................................................................................................................................................................................................................................

Frank matrix, , determinant, , inverse, , LU decomposition, characteristic polynomial
  • Referans1 J. Davis, Circulant Matrices, Wiley, New York, Chichester, Brisbane, 1979.
  • Referans2 P. J. Eberlein, A note on the matrices denoted B_{n}^{∗}, Siam J. Appl. Math. 20 (1971) 87-92.
  • Referans3 W.L. Frank, Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, J. Soc. Indust. Appl. Math. 6 (4) (1958) 378-392.
  • Referans4 J-F. Hake, A remark on Frank matrices, Computing 35 (1985) 375-379.
  • Referans5 E. Kılıç and T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turkish Journal of Mathematics 43 (2019) 2010-2024.
  • Referans6 M. Mattila and P. Haukkanen, Studying the various properties of Min and Max matrices - elementary vs. more advanced methods, Spec. Matrices 4 (2016) 101--109.
  • Referans7 J. M. Varah, A generalization of the Frank matrix, Siam J.Sci. Stat. Comput. 7 (3) (1986) 835-839.
Primary Language en
Subjects Mathematics
Journal Section Articles
Authors

Orcid: 0000-0001-6260-9063
Author: Efruz Özlem MERSİN
Institution: Aksaray Üniversitesi
Country: Turkey


Orcid: 0000-0002-6356-6592
Author: Mustafa BAHŞİ (Primary Author)
Institution: Aksaray Üniversitesi
Country: Turkey


Orcid: 0000-0001-7717-0241
Author: Ayşe Dilek MADEN
Institution: Selçuk Üniversitesi
Country: Turkey


Dates

Publication Date : October 15, 2020

Bibtex @research article { mathenot672621, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2020}, volume = {8}, pages = {170 - 177}, doi = {10.36753/mathenot.672621}, title = {Some Properties of Generalized Frank Matrices}, key = {cite}, author = {Mersi̇n, Efruz Özlem and Bahşi̇, Mustafa and Maden, Ayşe Dilek} }
APA Mersi̇n, E , Bahşi̇, M , Maden, A . (2020). Some Properties of Generalized Frank Matrices . Mathematical Sciences and Applications E-Notes , 8 (2) , 170-177 . DOI: 10.36753/mathenot.672621
MLA Mersi̇n, E , Bahşi̇, M , Maden, A . "Some Properties of Generalized Frank Matrices" . Mathematical Sciences and Applications E-Notes 8 (2020 ): 170-177 <https://dergipark.org.tr/en/pub/mathenot/issue/57179/672621>
Chicago Mersi̇n, E , Bahşi̇, M , Maden, A . "Some Properties of Generalized Frank Matrices". Mathematical Sciences and Applications E-Notes 8 (2020 ): 170-177
RIS TY - JOUR T1 - Some Properties of Generalized Frank Matrices AU - Efruz Özlem Mersi̇n , Mustafa Bahşi̇ , Ayşe Dilek Maden Y1 - 2020 PY - 2020 N1 - doi: 10.36753/mathenot.672621 DO - 10.36753/mathenot.672621 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 170 EP - 177 VL - 8 IS - 2 SN - -2147-6268 M3 - doi: 10.36753/mathenot.672621 UR - https://doi.org/10.36753/mathenot.672621 Y2 - 2020 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes Some Properties of Generalized Frank Matrices %A Efruz Özlem Mersi̇n , Mustafa Bahşi̇ , Ayşe Dilek Maden %T Some Properties of Generalized Frank Matrices %D 2020 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 8 %N 2 %R doi: 10.36753/mathenot.672621 %U 10.36753/mathenot.672621
ISNAD Mersi̇n, Efruz Özlem , Bahşi̇, Mustafa , Maden, Ayşe Dilek . "Some Properties of Generalized Frank Matrices". Mathematical Sciences and Applications E-Notes 8 / 2 (October 2020): 170-177 . https://doi.org/10.36753/mathenot.672621
AMA Mersi̇n E , Bahşi̇ M , Maden A . Some Properties of Generalized Frank Matrices. Math. Sci. Appl. E-Notes. 2020; 8(2): 170-177.
Vancouver Mersi̇n E , Bahşi̇ M , Maden A . Some Properties of Generalized Frank Matrices. Mathematical Sciences and Applications E-Notes. 2020; 8(2): 170-177.
IEEE E. Mersi̇n , M. Bahşi̇ and A. Maden , "Some Properties of Generalized Frank Matrices", Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, pp. 170-177, Oct. 2020, doi:10.36753/mathenot.672621