Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 2, 170 - 177, 15.10.2020
https://doi.org/10.36753/mathenot.672621

Abstract

References

  • Referans1 J. Davis, Circulant Matrices, Wiley, New York, Chichester, Brisbane, 1979.
  • Referans2 P. J. Eberlein, A note on the matrices denoted B_{n}^{∗}, Siam J. Appl. Math. 20 (1971) 87-92.
  • Referans3 W.L. Frank, Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, J. Soc. Indust. Appl. Math. 6 (4) (1958) 378-392.
  • Referans4 J-F. Hake, A remark on Frank matrices, Computing 35 (1985) 375-379.
  • Referans5 E. Kılıç and T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turkish Journal of Mathematics 43 (2019) 2010-2024.
  • Referans6 M. Mattila and P. Haukkanen, Studying the various properties of Min and Max matrices - elementary vs. more advanced methods, Spec. Matrices 4 (2016) 101--109.
  • Referans7 J. M. Varah, A generalization of the Frank matrix, Siam J.Sci. Stat. Comput. 7 (3) (1986) 835-839.

Some Properties of Generalized Frank Matrices

Year 2020, Volume: 8 Issue: 2, 170 - 177, 15.10.2020
https://doi.org/10.36753/mathenot.672621

Abstract

In this paper, we first introduce a new generalization of Frank matrix. Then, we examine its algebraic structure, determinant, inverse, LU decomposition and characteristic polynomial.

..............................................................................................................................................................................................................................................................................................................................

References

  • Referans1 J. Davis, Circulant Matrices, Wiley, New York, Chichester, Brisbane, 1979.
  • Referans2 P. J. Eberlein, A note on the matrices denoted B_{n}^{∗}, Siam J. Appl. Math. 20 (1971) 87-92.
  • Referans3 W.L. Frank, Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, J. Soc. Indust. Appl. Math. 6 (4) (1958) 378-392.
  • Referans4 J-F. Hake, A remark on Frank matrices, Computing 35 (1985) 375-379.
  • Referans5 E. Kılıç and T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turkish Journal of Mathematics 43 (2019) 2010-2024.
  • Referans6 M. Mattila and P. Haukkanen, Studying the various properties of Min and Max matrices - elementary vs. more advanced methods, Spec. Matrices 4 (2016) 101--109.
  • Referans7 J. M. Varah, A generalization of the Frank matrix, Siam J.Sci. Stat. Comput. 7 (3) (1986) 835-839.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Efruz Özlem Mersin 0000-0001-6260-9063

Mustafa Bahşi 0000-0002-6356-6592

Ayşe Dilek Maden 0000-0001-7717-0241

Publication Date October 15, 2020
Submission Date January 9, 2020
Acceptance Date May 1, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Mersin, E. Ö., Bahşi, M., & Maden, A. D. (2020). Some Properties of Generalized Frank Matrices. Mathematical Sciences and Applications E-Notes, 8(2), 170-177. https://doi.org/10.36753/mathenot.672621
AMA Mersin EÖ, Bahşi M, Maden AD. Some Properties of Generalized Frank Matrices. Math. Sci. Appl. E-Notes. October 2020;8(2):170-177. doi:10.36753/mathenot.672621
Chicago Mersin, Efruz Özlem, Mustafa Bahşi, and Ayşe Dilek Maden. “Some Properties of Generalized Frank Matrices”. Mathematical Sciences and Applications E-Notes 8, no. 2 (October 2020): 170-77. https://doi.org/10.36753/mathenot.672621.
EndNote Mersin EÖ, Bahşi M, Maden AD (October 1, 2020) Some Properties of Generalized Frank Matrices. Mathematical Sciences and Applications E-Notes 8 2 170–177.
IEEE E. Ö. Mersin, M. Bahşi, and A. D. Maden, “Some Properties of Generalized Frank Matrices”, Math. Sci. Appl. E-Notes, vol. 8, no. 2, pp. 170–177, 2020, doi: 10.36753/mathenot.672621.
ISNAD Mersin, Efruz Özlem et al. “Some Properties of Generalized Frank Matrices”. Mathematical Sciences and Applications E-Notes 8/2 (October 2020), 170-177. https://doi.org/10.36753/mathenot.672621.
JAMA Mersin EÖ, Bahşi M, Maden AD. Some Properties of Generalized Frank Matrices. Math. Sci. Appl. E-Notes. 2020;8:170–177.
MLA Mersin, Efruz Özlem et al. “Some Properties of Generalized Frank Matrices”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, 2020, pp. 170-7, doi:10.36753/mathenot.672621.
Vancouver Mersin EÖ, Bahşi M, Maden AD. Some Properties of Generalized Frank Matrices. Math. Sci. Appl. E-Notes. 2020;8(2):170-7.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.