In this paper, we consider and obtain binomial sums and alternating binomial
sums including falling factorial of the summation indices. For example, for
nonnegative integer $m,$
\begin{eqnarray*}
&&\sum\limits_{k=0}^{n}\dbinom{n}{k}k^{\underline{m}}U_{2k}^{2m}=\frac{n^{\underline{m}}}{\left( p^{2}+4\right) ^{m}}\left(
\sum\limits_{i=0}^{m}\left( -1\right) ^{i}\dbinom{2m}{i}V_{2\left(
m-i\right) }^{n-m}V_{2\left( m+n\right) \left( m-i\right) }-\left( -1\right)
^{m}2^{n-m}\dbinom{2m}{m}\right),
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Publication Date | October 15, 2020 |
Submission Date | March 23, 2020 |
Acceptance Date | May 5, 2020 |
Published in Issue | Year 2020 Volume: 8 Issue: 2 |
The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.