Year 2020, Volume 8 , Issue 2, Pages 123 - 129 2020-10-15

On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials

Sibel KOPARAL [1] , Neşe ÖMÜR [2]


In this paper, we consider and obtain binomial sums and alternating binomial sums including falling factorial of the summation indices. For example, for nonnegative integer $m,$ \begin{eqnarray*} &&\sum\limits_{k=0}^{n}\dbinom{n}{k}k^{\underline{m}}U_{2k}^{2m}=\frac{n^{\underline{m}}}{\left( p^{2}+4\right) ^{m}}\left( \sum\limits_{i=0}^{m}\left( -1\right) ^{i}\dbinom{2m}{i}V_{2\left( m-i\right) }^{n-m}V_{2\left( m+n\right) \left( m-i\right) }-\left( -1\right) ^{m}2^{n-m}\dbinom{2m}{m}\right),
Generalized Fibonacci numbers, sums, falling factorials
  • Reference1 Gould, H.W.: Combinatorial identities, Morgantown, W. Va., (1972).
  • Reference2 Kılıç E., Ömür, N. and Türker Ulutaş, Y.: Alternating sums of the powers of Fibonacci and Lucas numbers. Miskolc Mathematical Notes. 12 (1), 87-103 (2011).
  • Reference3 Kılıç E., Türker Ulutaş, Y., Ömür, N.: Formulas for weighted binomial sums with the powers of\ terms of binary recurrences. Miskolc Mathematical Notes. 13 (1), 53-65 (2012).
  • Reference4 Kılıç E., Ömür, N.. and Koparal, S.: On alternating weighted binomial sums with falling factorials. Bulletin of Mathematical Analysis and Applications. 9(1), 58-64 (2017).
  • Reference5 Kılıç E., Ömür, N.. and Koparal, S.: Formulae for two weighted binomial identities with the falling factorials.} Ars Combinatoria. 138 223-231 (2018).
  • Reference6 Khan M. and Kwong H.: Some binomial identities associated with the generalized natural number sequence. The Fibonacci Quarterly. 49 (1), 57-65 (2011).
  • Reference7 Kılıç E., and Taşdemir, F.:On binomial double sums with Fibonacci and Lucas Numbers-I. Ars Combinatoria. 144, 173-185 (2019).
  • Reference8 Kılıç E., and Taşdemir, F.: On binomial double sums with Fibonacci and Lucas Numbers-II. Ars Combinatoria. 144, 345-354 (2019).
  • Reference9 Ozeki, K.: On Melham's sum. Fibonacci Quarterly. 46/47 (2), 107-110 (2008/09).
  • Reference10 Prodinger, H.: On a sum of Melham and its variants. Fibonacci Quarterly. 46/47 (3), 207-215 (2008/09).
  • Reference11 Wiemann, M. and Cooper, C.: Divisibility of an F-L type convolution, in Applications of Fibonacci numbers. Ser. Proceedings of the 10th International Research Conference on Fibonacci Numbers and their Applications held at Northern Arizona University, Dorrecht:Klywer Acad. Publ. 9, 267-287 (2004).
Primary Language en
Subjects Mathematics
Journal Section Articles
Authors

Orcid: 0000-0001-9574-9652
Author: Sibel KOPARAL (Primary Author)
Institution: KOCAELİ ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-3972-9910
Author: Neşe ÖMÜR
Institution: Kocaeli University
Country: Turkey


Dates

Publication Date : October 15, 2020

Bibtex @research article { mathenot708004, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2020}, volume = {8}, pages = {123 - 129}, doi = {10.36753/mathenot.708004}, title = {On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials}, key = {cite}, author = {Koparal, Sibel and Ömür, Neşe} }
APA Koparal, S , Ömür, N . (2020). On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials . Mathematical Sciences and Applications E-Notes , 8 (2) , 123-129 . DOI: 10.36753/mathenot.708004
MLA Koparal, S , Ömür, N . "On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials" . Mathematical Sciences and Applications E-Notes 8 (2020 ): 123-129 <https://dergipark.org.tr/en/pub/mathenot/issue/57179/708004>
Chicago Koparal, S , Ömür, N . "On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials". Mathematical Sciences and Applications E-Notes 8 (2020 ): 123-129
RIS TY - JOUR T1 - On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials AU - Sibel Koparal , Neşe Ömür Y1 - 2020 PY - 2020 N1 - doi: 10.36753/mathenot.708004 DO - 10.36753/mathenot.708004 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 123 EP - 129 VL - 8 IS - 2 SN - -2147-6268 M3 - doi: 10.36753/mathenot.708004 UR - https://doi.org/10.36753/mathenot.708004 Y2 - 2020 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials %A Sibel Koparal , Neşe Ömür %T On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials %D 2020 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 8 %N 2 %R doi: 10.36753/mathenot.708004 %U 10.36753/mathenot.708004
ISNAD Koparal, Sibel , Ömür, Neşe . "On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials". Mathematical Sciences and Applications E-Notes 8 / 2 (October 2020): 123-129 . https://doi.org/10.36753/mathenot.708004
AMA Koparal S , Ömür N . On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials. Math. Sci. Appl. E-Notes. 2020; 8(2): 123-129.
Vancouver Koparal S , Ömür N . On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials. Mathematical Sciences and Applications E-Notes. 2020; 8(2): 123-129.
IEEE S. Koparal and N. Ömür , "On Binomial Sums and Alternating Binomial Sums of Generelized Fibonacci Numbers with Falling Factorials", Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, pp. 123-129, Oct. 2020, doi:10.36753/mathenot.708004