Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 2, 10 - 14, 15.10.2020
https://doi.org/10.36753/mathenot.747990

Abstract

References

  • Baumslag, G.: Groups with the Same Lower Central Sequence as a Relatively Free Group I. The Groups. Trans. Amer. Math. Soc., 129, 308-321 (1967).
  • Baumslag, G.: Groups with the Same Lower Central Sequence as a Relatively Free Group. II Properties. Trans. Amer. Math. Soc. 142, 507-538 (1969).
  • Baumslag, G.: Parafree Groups. Progress in Math. 248, 1-14 (2005).
  • Baumslag, G., Cleary, S.: Parafree one-relator Groups. Journal of Group Theory. 9, 191-201 (2006).
  • Baumslag, G., Cleary, S., Havas, G.: Experimenting with infinite group. Experimental Math. 13, 495-502 (2004).
  • Baur, H.: Parafreie Lie Algebren und Homologie. Ph.D. thesis. Eidgenoessischen Technischen Hochschule Zuerich (1978).
  • Baur, H.: A Note on Parafree Lie Algebras. Commun. in Algebra. 8, (10), 953-960 (1980).
  • Bokut, L.A., Kukin G. P.: Algorithmic and Combinatorial Algebra. Kluwer Academic Publishers. Dordrecht. The Netherlands (1994).
  • Ekici, N., Velioglu, Z.: Unions of Parafree Lie Algebras. Algebra. 2014, Article ID 385397, (2014).
  • Ekici, N., Velioglu, Z.: Direct Limit of Parafree Lie Algebras. Journal of Lie Theory. 25 (2), 477-484 (2015).
  • Velioglu, Z.: Subalgebras and Quotient Algebras of Parafree Lie Algebras. IJPAM. 83, 507-517 (2013).
  • Velioglu, Z.: Parafree Metabelian Lie algebras which are Determined by Parafree Lie Algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68 (1), 883-888 (2019).

Parafree Center-by-Metabelian Lie Algebras

Year 2020, Volume: 8 Issue: 2, 10 - 14, 15.10.2020
https://doi.org/10.36753/mathenot.747990

Abstract

Let L be a Lie algebra. Denote the second term of the derived series of L by L'' . We define the parafree
centre-by-metabelian Lie algebras. We prove that if L is a parafree centre-by-metabelian, then the center
of L is L'' . Moreover we show that the algebra L/L'' is parafree metabelian Lie algebra. ..................................................................................................................................................................................................................................


References

  • Baumslag, G.: Groups with the Same Lower Central Sequence as a Relatively Free Group I. The Groups. Trans. Amer. Math. Soc., 129, 308-321 (1967).
  • Baumslag, G.: Groups with the Same Lower Central Sequence as a Relatively Free Group. II Properties. Trans. Amer. Math. Soc. 142, 507-538 (1969).
  • Baumslag, G.: Parafree Groups. Progress in Math. 248, 1-14 (2005).
  • Baumslag, G., Cleary, S.: Parafree one-relator Groups. Journal of Group Theory. 9, 191-201 (2006).
  • Baumslag, G., Cleary, S., Havas, G.: Experimenting with infinite group. Experimental Math. 13, 495-502 (2004).
  • Baur, H.: Parafreie Lie Algebren und Homologie. Ph.D. thesis. Eidgenoessischen Technischen Hochschule Zuerich (1978).
  • Baur, H.: A Note on Parafree Lie Algebras. Commun. in Algebra. 8, (10), 953-960 (1980).
  • Bokut, L.A., Kukin G. P.: Algorithmic and Combinatorial Algebra. Kluwer Academic Publishers. Dordrecht. The Netherlands (1994).
  • Ekici, N., Velioglu, Z.: Unions of Parafree Lie Algebras. Algebra. 2014, Article ID 385397, (2014).
  • Ekici, N., Velioglu, Z.: Direct Limit of Parafree Lie Algebras. Journal of Lie Theory. 25 (2), 477-484 (2015).
  • Velioglu, Z.: Subalgebras and Quotient Algebras of Parafree Lie Algebras. IJPAM. 83, 507-517 (2013).
  • Velioglu, Z.: Parafree Metabelian Lie algebras which are Determined by Parafree Lie Algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68 (1), 883-888 (2019).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Zehra Velioğlu 0000-0001-7151-8534

Publication Date October 15, 2020
Submission Date June 4, 2020
Acceptance Date August 29, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Velioğlu, Z. (2020). Parafree Center-by-Metabelian Lie Algebras. Mathematical Sciences and Applications E-Notes, 8(2), 10-14. https://doi.org/10.36753/mathenot.747990
AMA Velioğlu Z. Parafree Center-by-Metabelian Lie Algebras. Math. Sci. Appl. E-Notes. October 2020;8(2):10-14. doi:10.36753/mathenot.747990
Chicago Velioğlu, Zehra. “Parafree Center-by-Metabelian Lie Algebras”. Mathematical Sciences and Applications E-Notes 8, no. 2 (October 2020): 10-14. https://doi.org/10.36753/mathenot.747990.
EndNote Velioğlu Z (October 1, 2020) Parafree Center-by-Metabelian Lie Algebras. Mathematical Sciences and Applications E-Notes 8 2 10–14.
IEEE Z. Velioğlu, “Parafree Center-by-Metabelian Lie Algebras”, Math. Sci. Appl. E-Notes, vol. 8, no. 2, pp. 10–14, 2020, doi: 10.36753/mathenot.747990.
ISNAD Velioğlu, Zehra. “Parafree Center-by-Metabelian Lie Algebras”. Mathematical Sciences and Applications E-Notes 8/2 (October 2020), 10-14. https://doi.org/10.36753/mathenot.747990.
JAMA Velioğlu Z. Parafree Center-by-Metabelian Lie Algebras. Math. Sci. Appl. E-Notes. 2020;8:10–14.
MLA Velioğlu, Zehra. “Parafree Center-by-Metabelian Lie Algebras”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, 2020, pp. 10-14, doi:10.36753/mathenot.747990.
Vancouver Velioğlu Z. Parafree Center-by-Metabelian Lie Algebras. Math. Sci. Appl. E-Notes. 2020;8(2):10-4.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.