Year 2020, Volume 8 , Issue 2, Pages 21 - 31 2020-10-15

Exponential-Discrete Lindley Distribution: Properties and Applications

Sibel AÇIK KEMALOĞLU [1] , Mehmet YILMAZ [2]


In this paper, we introduce a new compounding distribution named Exponential Discrete Lindley distribution which compounds the discrete Lindley distribution and exponential distribution. We obtain several properties of the new distribution such as its probability density function, survival function, hazard rate function, mean residual life function. Moments and expression for the Rényi entropy of the proposed distribution are also given. Moreover, the maximum likelihood method using the EM algorithm is developed for parameter estimation. Two real data sets are used to illustrate the usefulness of the proposed distribution
Discrete Lindley distribution, Compound distribution, Exponential distribution, Maximum likelihood estimation, EM-algorithm, Rényi entropy
  • Adamidis K., Loukas, S.: A lifetime distribution with decreasing failure rate. Stat Probab Lett. 39 (1), 35-42 (1998). https://doi.org/10.1016/S0167-7152(98)00012-1
  • Kus, C.: A new lifetime distribution. Comput Stat Data Anal. 51 (9), 4497–4509 (2007). https://doi.org/10.1016/j.csda.2006.07.017.
  • Tahmasbi, R., Rezaei, S.: A two-parameter lifetime distribution with decreasing failure rate. Comput Stat Data Anal. 52 (8), 3889–3901 (2008). https://doi.org/10.1016/j.csda.2007.12.002
  • Chahkandi, M., Ganjali, M.: On some lifetime distributions with decreasing failure rate. Comput Stat Data Anal. 53 (12), 4433–4440 (2009). https://doi.org/10.1016/j.csda.2009.06.016
  • Barreto-Souza, W., Bakouch, H.S.: A new lifetime model with decreasing failure rate. Statistics. 47 (2), 465–476 (2013) https://doi.org/10.1080/02331888.2011.595489
  • Lu, W., Chiang, J. Y.: On some life distributions with flexible failure rate. Quality Technology & Quantitative Management. 15 (3), 413-433 (2018). https://doi.org/10.1080/16843703.2016.1226596
  • Gui, W., Zhang, S., Lu, X.: The Lindley-Poisson distribution in lifetime analysis and its properties. Hacet J Math Stat. 43 (6), 1063–1077 (2014).
  • Yilmaz, M., Hameldarbandi, M., Kemaloglu, S.A.: Exponential-modified discrete Lindley distribution. SpringerPlus. 5 (1660), (2016b). https://doi.org/10.1186/s40064-016-3302-2
  • Bhaumik, D.K., Kapur, K., Gibbons, R.D.: Testing Parameters of a Gamma Distribution for Small Samples. Technometrics. 51, 326–334 (2009). https://doi.org/10.1198/tech.2009.07038
  • Maguire, B.A., Pearson, E.S., Wynn, A.H.A.: The time intervals between industrial accidents. Biometrika. 39 (1/2), 168–180 (1952). https://doi.org/10.2307/2332475
  • Yilmaz, M., Potas, N., Buyum, B.: A Classical Approach to Modeling of Coal Mine Data. In: Erçetin ¸S. (eds) Chaos, Complexity and Leadership 2014. Springer Proceedings in Complexity. Springer, Cham. Chapter 7, 65-72 (2016). https://doi.org/10.1007/978-3-319-18693-1_7
  • Mahdavi, A. and Kundu, D.: A New Method for Generating Distributions with an Application to Exponential Distribution. Communications in Statistics-Theory and Methods. 46 (13), 6543-6557 (2017). https://doi.org/10.1080/03610926.2015.1130839
Primary Language en
Subjects Mathematics
Journal Section Articles
Authors

Orcid: 0000-0003-0449-6966
Author: Sibel AÇIK KEMALOĞLU (Primary Author)
Institution: Ankara University
Country: Turkey


Orcid: 0000-0002-9762-6688
Author: Mehmet YILMAZ
Institution: ANKARA UNIVERSITY
Country: Turkey


Dates

Publication Date : October 15, 2020

Bibtex @research article { mathenot752965, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2020}, volume = {8}, pages = {21 - 31}, doi = {10.36753/mathenot.752965}, title = {Exponential-Discrete Lindley Distribution: Properties and Applications}, key = {cite}, author = {Açık Kemaloğlu, Sibel and Yılmaz, Mehmet} }
APA Açık Kemaloğlu, S , Yılmaz, M . (2020). Exponential-Discrete Lindley Distribution: Properties and Applications . Mathematical Sciences and Applications E-Notes , 8 (2) , 21-31 . DOI: 10.36753/mathenot.752965
MLA Açık Kemaloğlu, S , Yılmaz, M . "Exponential-Discrete Lindley Distribution: Properties and Applications" . Mathematical Sciences and Applications E-Notes 8 (2020 ): 21-31 <https://dergipark.org.tr/en/pub/mathenot/issue/57179/752965>
Chicago Açık Kemaloğlu, S , Yılmaz, M . "Exponential-Discrete Lindley Distribution: Properties and Applications". Mathematical Sciences and Applications E-Notes 8 (2020 ): 21-31
RIS TY - JOUR T1 - Exponential-Discrete Lindley Distribution: Properties and Applications AU - Sibel Açık Kemaloğlu , Mehmet Yılmaz Y1 - 2020 PY - 2020 N1 - doi: 10.36753/mathenot.752965 DO - 10.36753/mathenot.752965 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 21 EP - 31 VL - 8 IS - 2 SN - -2147-6268 M3 - doi: 10.36753/mathenot.752965 UR - https://doi.org/10.36753/mathenot.752965 Y2 - 2020 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes Exponential-Discrete Lindley Distribution: Properties and Applications %A Sibel Açık Kemaloğlu , Mehmet Yılmaz %T Exponential-Discrete Lindley Distribution: Properties and Applications %D 2020 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 8 %N 2 %R doi: 10.36753/mathenot.752965 %U 10.36753/mathenot.752965
ISNAD Açık Kemaloğlu, Sibel , Yılmaz, Mehmet . "Exponential-Discrete Lindley Distribution: Properties and Applications". Mathematical Sciences and Applications E-Notes 8 / 2 (October 2020): 21-31 . https://doi.org/10.36753/mathenot.752965
AMA Açık Kemaloğlu S , Yılmaz M . Exponential-Discrete Lindley Distribution: Properties and Applications. Math. Sci. Appl. E-Notes. 2020; 8(2): 21-31.
Vancouver Açık Kemaloğlu S , Yılmaz M . Exponential-Discrete Lindley Distribution: Properties and Applications. Mathematical Sciences and Applications E-Notes. 2020; 8(2): 21-31.
IEEE S. Açık Kemaloğlu and M. Yılmaz , "Exponential-Discrete Lindley Distribution: Properties and Applications", Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, pp. 21-31, Oct. 2020, doi:10.36753/mathenot.752965