Research Article
BibTex RIS Cite

Unrestricted Lichtenberg Hybrid Sequences

Year 2025, Volume: 13 Issue: 3, 156 - 164, 06.09.2025
https://doi.org/10.36753/mathenot.1689222

Abstract

This research introduces a novel category of hybrid numbers, with components represented by unrestricted Lichtenberg numbers. We present some recurrence relations, summation formulas, the Binet formula, and the generating function associated with these numbers. Additionally, a comprehensive Vajda's identity is derived, which encompasses Catalan's, Cassini's and d'Ocagne's identities as specific cases.

References

  • [1] Hinz, A. M.: The Lichtenberg sequence. The Fibonacci Quarterly. 55(2), 2-12 (2017).
  • [2] Stockmeyer, P. K.: An exploration of sequence A000975. The Fibonacci Quarterly. 55(5), 174-185 (2017).
  • [3] Horadam, A. F.: Jacobsthal representation numbers. The Fibonacci Quarterly. 43(1), 40-54 (1996).
  • [4] Catarino, P., Campos, H., Vasco, P.: On the Mersenne sequence. Annales Mathematicae et Informaticae. 46, 37-53 (2016).
  • [5] Özdemir, M.: Introduction to hybrid numbers. Advances in Applied Clifford Algebras. 28, 1-32 (2018).
  • [6] Morales, G.: Investigation of generalized Fibonacci hybrid numbers and their properties. Applied Mathematics E-Notes. 21, 110-118 (2021).
  • [7] Polatlı, E.: Hybrid numbers with Fibonacci and Lucas hybrid number coefficients. Universal Journal of Mathematics and Applications. 6(3), 106-113 (2023).
  • [8] Şentürk, T. D., Bilgici, G., Daşdemir, A., Ünal, Z.: A study on Horadam hybrid numbers. Turkish Journal of Mathematics. 44(4), 1212-1221 (2020).
  • [9] Szynal-Liana, A., Włoch, I.: The Fibonacci hybrid numbers. Utilitas Mathematica. 110, 3-10 (2019).
  • [10] Polatlı, E.: A note on ratios of Fibonacci hybrid and Lucas hybrid numbers. Notes on Number Theory and Discrete Mathematics. 27(3), 73-78 (2021).
  • [11] Szynal-Liana, A., Włoch, I.: On Pell and Pell-Lucas hybrid numbers. Commentationes Mathematicae. 58(1), 11-17 (2018).
  • [12] Szynal-Liana, A., Włoch, I.: On Jacobsthal and Jacobsthal-Lucas hybrid numbers. Annales Mathematicae Silesianae. 33, 276-283 (2019).
  • [13] Szynal-Liana, A., Włoch, I.: On generalized Mersenne hybrid numbers. Annales Universitatis Mariae Curie- Sklodowska, sectio A–Mathematica. 74(1), 77-84 (2020).
  • [14] Taşci, D., Sevgi, E.: Some properties between Mersenne, Jacobsthal and Jacobsthal-Lucas hybrid numbers, Chaos, Solitons & Fractals. 146, 1-7 (2021).
  • [15] Özkan, E., Uysal, M.: Mersenne-Lucas hybrid numbers. Mathematica Montisnigri. 52, 17-29 (2021).
  • [16] Morales, G.: On the Lichtenberg hybrid quaternions. Mathematica Moravica. 29(1), 31-41 (2025).
  • [17] Morales, G.: Properties between Lichtenberg, Jacobsthal and Mersenne Gaussian numbers. Konuralp Journal of Mathematics. 13(1), 21-27 (2025).
  • [18] Maheswari, D., Devi B. M., Devibala, S.: Unrestricted Mersenne and Mersenne-Lucas hybrid sequences. Indian Journal of Science and Technology. 16(41), 3591-3598 (2023).

Year 2025, Volume: 13 Issue: 3, 156 - 164, 06.09.2025
https://doi.org/10.36753/mathenot.1689222

Abstract

References

  • [1] Hinz, A. M.: The Lichtenberg sequence. The Fibonacci Quarterly. 55(2), 2-12 (2017).
  • [2] Stockmeyer, P. K.: An exploration of sequence A000975. The Fibonacci Quarterly. 55(5), 174-185 (2017).
  • [3] Horadam, A. F.: Jacobsthal representation numbers. The Fibonacci Quarterly. 43(1), 40-54 (1996).
  • [4] Catarino, P., Campos, H., Vasco, P.: On the Mersenne sequence. Annales Mathematicae et Informaticae. 46, 37-53 (2016).
  • [5] Özdemir, M.: Introduction to hybrid numbers. Advances in Applied Clifford Algebras. 28, 1-32 (2018).
  • [6] Morales, G.: Investigation of generalized Fibonacci hybrid numbers and their properties. Applied Mathematics E-Notes. 21, 110-118 (2021).
  • [7] Polatlı, E.: Hybrid numbers with Fibonacci and Lucas hybrid number coefficients. Universal Journal of Mathematics and Applications. 6(3), 106-113 (2023).
  • [8] Şentürk, T. D., Bilgici, G., Daşdemir, A., Ünal, Z.: A study on Horadam hybrid numbers. Turkish Journal of Mathematics. 44(4), 1212-1221 (2020).
  • [9] Szynal-Liana, A., Włoch, I.: The Fibonacci hybrid numbers. Utilitas Mathematica. 110, 3-10 (2019).
  • [10] Polatlı, E.: A note on ratios of Fibonacci hybrid and Lucas hybrid numbers. Notes on Number Theory and Discrete Mathematics. 27(3), 73-78 (2021).
  • [11] Szynal-Liana, A., Włoch, I.: On Pell and Pell-Lucas hybrid numbers. Commentationes Mathematicae. 58(1), 11-17 (2018).
  • [12] Szynal-Liana, A., Włoch, I.: On Jacobsthal and Jacobsthal-Lucas hybrid numbers. Annales Mathematicae Silesianae. 33, 276-283 (2019).
  • [13] Szynal-Liana, A., Włoch, I.: On generalized Mersenne hybrid numbers. Annales Universitatis Mariae Curie- Sklodowska, sectio A–Mathematica. 74(1), 77-84 (2020).
  • [14] Taşci, D., Sevgi, E.: Some properties between Mersenne, Jacobsthal and Jacobsthal-Lucas hybrid numbers, Chaos, Solitons & Fractals. 146, 1-7 (2021).
  • [15] Özkan, E., Uysal, M.: Mersenne-Lucas hybrid numbers. Mathematica Montisnigri. 52, 17-29 (2021).
  • [16] Morales, G.: On the Lichtenberg hybrid quaternions. Mathematica Moravica. 29(1), 31-41 (2025).
  • [17] Morales, G.: Properties between Lichtenberg, Jacobsthal and Mersenne Gaussian numbers. Konuralp Journal of Mathematics. 13(1), 21-27 (2025).
  • [18] Maheswari, D., Devi B. M., Devibala, S.: Unrestricted Mersenne and Mersenne-Lucas hybrid sequences. Indian Journal of Science and Technology. 16(41), 3591-3598 (2023).
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions, Applied Mathematics (Other)
Journal Section Articles
Authors

Gamaliel Morales 0000-0003-3164-4434

Early Pub Date August 22, 2025
Publication Date September 6, 2025
Submission Date May 2, 2025
Acceptance Date August 17, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Morales, G. (2025). Unrestricted Lichtenberg Hybrid Sequences. Mathematical Sciences and Applications E-Notes, 13(3), 156-164. https://doi.org/10.36753/mathenot.1689222
AMA Morales G. Unrestricted Lichtenberg Hybrid Sequences. Math. Sci. Appl. E-Notes. September 2025;13(3):156-164. doi:10.36753/mathenot.1689222
Chicago Morales, Gamaliel. “Unrestricted Lichtenberg Hybrid Sequences”. Mathematical Sciences and Applications E-Notes 13, no. 3 (September 2025): 156-64. https://doi.org/10.36753/mathenot.1689222.
EndNote Morales G (September 1, 2025) Unrestricted Lichtenberg Hybrid Sequences. Mathematical Sciences and Applications E-Notes 13 3 156–164.
IEEE G. Morales, “Unrestricted Lichtenberg Hybrid Sequences”, Math. Sci. Appl. E-Notes, vol. 13, no. 3, pp. 156–164, 2025, doi: 10.36753/mathenot.1689222.
ISNAD Morales, Gamaliel. “Unrestricted Lichtenberg Hybrid Sequences”. Mathematical Sciences and Applications E-Notes 13/3 (September2025), 156-164. https://doi.org/10.36753/mathenot.1689222.
JAMA Morales G. Unrestricted Lichtenberg Hybrid Sequences. Math. Sci. Appl. E-Notes. 2025;13:156–164.
MLA Morales, Gamaliel. “Unrestricted Lichtenberg Hybrid Sequences”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 3, 2025, pp. 156-64, doi:10.36753/mathenot.1689222.
Vancouver Morales G. Unrestricted Lichtenberg Hybrid Sequences. Math. Sci. Appl. E-Notes. 2025;13(3):156-64.

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.