Research Article
BibTex RIS Cite

Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem

Year 2025, Volume: 13 Issue: 3, 144 - 155, 06.09.2025
https://doi.org/10.36753/mathenot.1695015

Abstract

In the present paper, we introduce the concepts of $\Delta^{f,b,a}$--harmonic summability, $\Delta^{f,b,a}$--statistical harmonic summability and $\Delta^{f,b,a}$--logarithmic statistical convergence of sequences of fuzzy numbers, where $\Delta^{f,b,a}$ is fractional difference operator introduced by Baliarsingh \cite{Bal2016}. Then, we investigate the relationship between the sorts of new definitions. Also, we give some results on limits of $\Delta^{f,b,a}$--logarithmic statistical convergence for these sequences. Finally, we use the new statistical summability method to prove a Korovkin-type approximation theorem.

References

  • [1] Baliarsingh, P.: On a fractional difference operator. Alexandria Engineering Journal. 55(2), 1811–1816 (2016).
  • [2] Kızmaz, H.: On certain sequence spaces. Canadian Mathematical Bulletin. 24(2), 169–176 (1981).
  • [3] Et, M., Çolak, R.: On some generalized difference sequence spaces. Soochow Journal of Mathematics. 21(4), 377–386 (1995).
  • [4] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951).
  • [5] Schoenberg, I. J .: The integrability of certain function and related summability methods. The American Mathematical Monthly. 66, 361-375 (1959).
  • [6] Et, M., Nuray, F.: Δm−Statistical convergence. Indian Journal of Pure and Applied Mathematics. 32(6), 961-969 (2001).
  • [7] Çolak, R., Altınok, H., Et, M.: Generalized difference sequences of fuzzy numbers. Chaos, Solitons and Fractals. 40(3), 1106-1117 (2009).
  • [8] Baliarsingh, P.: Some new difference sequence spaces of fractional order and their dual spaces. Applied Mathematics and Computation. 219(18), 9737-9742 (2013).
  • [9] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press. 96, (2011).
  • [10] Baliarsingh, P., Kadak U., Mursaleen, M.: On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems. Quaestiones Mathematicae. 41(8), 1117-1133 (2018).
  • [11] Aral, N. D.: On weighted statistical convergence of difference sequences of fractional order. The Journal of Analysis. 31(4), 2563–2574 (2023).
  • [12] Aral, N. D., Kandemir, ¸S. H., Et, M.: Δm−Deferred statistical convergence of fractional order. In American Institute of Physics Conference Series. 2334(1), 040002 (2021).
  • [13] Atabey, K. İ., Çınar, M.: On f-statistical convergence of fractional difference on double sequence. Facta Universitatis, Series: Mathematics and Informatics. 26(6), 631–642 (2022).
  • [14] Aral, N. D., Kandemir, ¸S. H.: On f-lacunary statistical convergence of order β of double sequences for fractional order. Facta Universitatis, Series: Mathematics and Informatics. 32(2) 329–343 (2023).
  • [15] Zadeh, L. A.: Fuzzy sets. Information and Control. 8, 338–353 (1965).
  • [16] Matloka, M.: Sequences of fuzzy numbers. Busefal. 28(1), 28–37 (1986).
  • [17] Mohiuddine, S. A., Asiri, A., Hazarika, B.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. International Journal of General Systems. 48(5), 492-506 (2019).
  • [18] Baliarsingh, P., Nayak, L.: On deferred statistical convergence of order β for fuzzy fractional difference sequence and applications. Soft Computing. 26(6), 2625–2634 (2022).
  • [19] Raj, K., Saini, K., Mursaleen, M.: Applications of the fractional difference operator for studying Euler statistical convergence of sequences of fuzzy real numbers and associated Korovkin-type theorems. Problemy Analiza Issues of Analysis. 11(3), 91–108 (2022).
  • [20] Moricz, F.: Theorems relating to statistical harmonic summability and ordinary convergence of slowly decreasing or oscillating sequences. Analysis. 24(2), 127-146 (2004).
  • [21] Alghamdi, M. A., Mursaleen, M., Alotaibi, A.: Logarithmic density and logarithmic statistical convergence. Advances in Difference Equations. 2013(1), 227 (2013).
  • [22] Yavuz, E., Coşkun, H.: On the logarithmic summability method for sequences of fuzzy numbers. Soft Computing. 21, 5779-5785 (2017).
  • [23] Puri, M. L., Ralescu, D. A.: Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications. 91(2), 552–558 (1983).
  • [24] Mursaleen, M., Baliarsingh, P.: On the convergence and statistical convergence of difference sequences of fractional order. The Journal of Analysis. 30(2), 469–481 (2022).
  • [25] Korovkin, P. P.: Linear Operators and Approximation Theory. Hindustan Publishing Corporation. Delhi, (1960).
  • [26] Anastassiou, G. A., Duman, O.: Statistical fuzzy approximation by fuzzy positive linear operators. Computers and Mathematics with Applications. 55, 573-580 (2008).
There are 26 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Funda Babaarslan 0000-0003-2716-7831

Early Pub Date July 30, 2025
Publication Date September 6, 2025
Submission Date May 7, 2025
Acceptance Date July 23, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Babaarslan, F. (2025). Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem. Mathematical Sciences and Applications E-Notes, 13(3), 144-155. https://doi.org/10.36753/mathenot.1695015
AMA Babaarslan F. Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem. Math. Sci. Appl. E-Notes. September 2025;13(3):144-155. doi:10.36753/mathenot.1695015
Chicago Babaarslan, Funda. “Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem”. Mathematical Sciences and Applications E-Notes 13, no. 3 (September 2025): 144-55. https://doi.org/10.36753/mathenot.1695015.
EndNote Babaarslan F (September 1, 2025) Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem. Mathematical Sciences and Applications E-Notes 13 3 144–155.
IEEE F. Babaarslan, “Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem”, Math. Sci. Appl. E-Notes, vol. 13, no. 3, pp. 144–155, 2025, doi: 10.36753/mathenot.1695015.
ISNAD Babaarslan, Funda. “Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem”. Mathematical Sciences and Applications E-Notes 13/3 (September2025), 144-155. https://doi.org/10.36753/mathenot.1695015.
JAMA Babaarslan F. Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem. Math. Sci. Appl. E-Notes. 2025;13:144–155.
MLA Babaarslan, Funda. “Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 3, 2025, pp. 144-55, doi:10.36753/mathenot.1695015.
Vancouver Babaarslan F. Statistical Harmonic Summability of Fuzzy Fractional Difference Sequences and Associated Korovkin-Type Theorem. Math. Sci. Appl. E-Notes. 2025;13(3):144-55.

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.