Tornalama İşleminde Karbon Emisyonunu En Aza İndiren Bir Modelin Geliştirilmesi
Yıl 2016,
Cilt: 14 Sayı: 1, 31 - 40, 02.05.2018
Yusuf Tansel İç
,
F. Selin Akkoç
Nergis Gümüşboğa
Zeynep Ballı
Öz
Son günlerde birçok araştırmacı büyük miktarda enerji tüketen ve atmosfere karbon
salan imalat işlemleri üzerinde yoğunlaşmışlardır. Karbon salınımını azaltmayı
amaçlayan düşük karbonlu üretim literatürde popüler bir konu başlığıdır. Bu
çalışma, geleneksel tornalama işleminde karbon salınım miktarının
belirlenmesine yönelik bir bütünleşik model sunmaktadır. Çalışmada kesici
takım, elektrik sistemi, iş parçası ve kesici takım malzeme özellikleri ve talaş
kaldırma gibi geleneksel torna tezgahı alt sistemlerinin toplam karbon emisyonuna
katkıları araştırılmıştır. Ardından tekil alt sistemlerin toplam karbon salınımı
miktarını nicel olarak ortaya koyan bir model geliştirilmiştir. Geliştirilen
model geleneksel bir torna tezgahında farklı kesme faktörlerinin karbon
salınımına etkilerini tespit etmek için bir tornalama işlemine uygulanmıştır.
Kaynakça
- 1. Li, C., Tang, Y., Cui, L., Li, P., A
quantitative approach to analyze carbon
emissions of CNC-based machining systems,
Int. J. Of Advanced Manufacturing Tech., 26
(2015), 911–922.
- 2. Herrmann, C., Thiede, S., Process chain
simulation to foster energy efficiency in
manufacturing, CIRP Journal of
Manufacturing Science and Technology, 1
(2009) 4, 221–229.
- 3. Tian, G. D., Liu, Y. M., Ke, H., Chu, J. W.,
Energy evaluation method and its
optimization models for process planning
with stochastic characteristics: A case study
in disassembly decision making, Computers
and Industrial Engineering, 9(2012) 2, 107–
112.
- 4. Rahimifard, S., Seow, Y., Childs, T.,
Minimizing embodied product energy to
support energy efficient manufacturing,
Manufacturing Technology, 59(2010) 1, 25–
28.
- 5. Gutowski, T. G., The carbon and energy
intensity of manufacturing, Proceedings of
the 40th CIRP international manufacturing
systems, 2007.
- 6. Neugebauer, R., Wertheim, R., Harzbecker,
C., Energy and resources efficiency in the
metal cutting industry, Proceedings of the
8th global conference on sustainable
manufacturing, 36, 247–257, 2011.
- 7. Diaz, N., Redelsheimer, E., Dornfeld, D.,
Energy consumption characterization and
reduction strategies for milling machine tool
use, Proceedings of 18th CIRP international
conference on lifecycle engineering, 263–
267, 2011.
- 8. Jia, S., Tang, R. Z., Lv, J., Therblig-based
energy demand modeling methodology of
machining process to support intelligent
manufacturing, Journal of Intelligent
Manufacturing, 25 (2014) 5, 913-931.
- 9. Krishnan, N., Raoux, S., Dornfeld, D.,
Quantifying the environmental foot print of
semiconductor equipment using the
environmental value systems analysis (EnVS),
IEEE transactions on Semiconductor
Manufacturing, 17( 2004) 4, 554–561.
- 10. Jeswiet, J., Kara, S., Carbon emissions and
CES in manufacturing, CIRP Annals-
Manufacturing Technology, 57 (2008) 1, 17–
20, 2008.
- 11. Tridech, S., Cheng, K., Low carbon
manufacturing: Characterisation, theoretical
models and implementation, International
Journal of Manufacturing Research, 6
(2008) 2, 110–121.
- 12. Diaz, N., Choi, S., Helu, M., Chen, Y. F.,
Jayanathan, S., Yasui,Y., Kong, D.,
Pavanaskar, S., Dornfeld, D., Machine tool
design and operation strategies for green
manufacturing, Proceedings of 4th CIRP
international conference on high
performance cutting, 1–6, 2010.
- 13. Song, J. S., Lee, K. M., Development of a
low-carbon product design system based on
embedded GHG emissions, Resources
Conservation and Recycling, 54 (2010) 9,
547–556.
- 14. Rajemi, M. F., Mativenga, P. T.,
Aramcharoen, A., Sustainable machining:
Selection of optimum turning conditions
based on minimum energy considerations,
Journal of Cleaner Production, 18 (2010)
10–11, 1059–1065.
- 15. Le, T. P. N., Lee, T. R., Model selection
with considering the CO2 emission alone the
global supply chain, Journal of
IntelligentManufacturing, 24 (2013) 4, 653-
672.
- 16. Halevi, Y., Carpanzano, E., Montalbano, G.,
Koren, Y., Minimum energy control of
redundant actuation machine tools,
Manufacturing Technology, 60 (2011) 1,
433–436.
- 17. Chen, Q. X., Kang, C. Q., Xia, Q., Guan, D.
B., Preliminary exploration on low-carbon
technology roadmap of China’s power
sector, Energy, 36 (2011) 3, 1500–1512.
- 18. Fang, K., Uhana, N., Zhao, F., Sutherland, J.
W., A new approach to scheduling in
manufacturing for power consumption and
carbon footprint reduction, Journal of
Manufacturing Systems, 30(2011) 4, 234–
240.
- 19. Duflou, J. R., Sutherland, J. W., Dornfeld,
D., Herrmann, C., Jeswiet, J., Kara, S., et al.,
Towards energy and resource efficient
manufacturing: A processes and systems
approach, Manufacturing Technology,
61(2012) 2, 587–609.
- 20. Canadell, J. G., Quèrè, C. L., & Raupacha,
M. R., Field, C.B., Buitenhuis, E.T., Ciais ,
P., Conway, T.J., Gillett, N.P., Houghton, R.
A., Marland, G., Contributions to
accelerating atmospheric CO2 growth from
economic activity, carbon intensity, and
efficiency of natural sinks, Proceedings of
the National Academy of Sciences of the
USA, 104(47), 18866–18870, 2007.
- 21. İç, Y.T., Yıldırım, S., Çok Kriterli Karar
Verme Yöntemleriyle Birlikte TAGUCHI
Yöntemini Kullanarak Bir Ürünün
Tasarımının Geliştirilmesi, Gazi Üniv. Müh.
Mim. Fak. Der., 27(2012) 2, 447-458.
- 22. Tong, L.I., Chen, C.C., Wang, C.H.,
Optimization of multi-response processes
using the VIKOR method, International
Journal of Advanced Manufacturing
Technology, 31(2007), 1049–1057.
- 23. Lan, T-S.,Taguchi optimization of multi
objective CNC machining using TOPSIS,
Information Technology Journal, 8(2009) 6,
917-922.