Research Article
BibTex RIS Cite

Kişiselleştirilmiş Robot Tasarımı için Kavramsal Tasarım Metodolojisi

Year 2020, Volume: 18 Issue: 1, 24 - 36, 19.09.2020

Abstract

Bu makalede, kişiselleştirilmiş robotlardan oluşan robot ürün ailelerinin kavramsal tasarımı için geliştirilen ve mekatronik davranış modüllerine dayanan sistematik bir yaklaşım anlatılmıştır. Çalışma kapsamında mekatronik sistemlerin algılama, muhakeme ve motorik hareket davranışlarını içeren temel davranış modülleri 3 boyutlu bir Tasarım Yapı Matrisi (TYM) ile modellenmiştir. Mekatronik davranış modülleri farklı robot görevlerinin tanımlanmasında kullanılmaktadır. Makalede bu çerçeveye dayanan modüler mekatronik tasarım metodolojisinin kavramsal yapısı sunulmuş ve laboratuvarda yapılan bir örnek uygulama anlatılmıştır.

References

  • 1. AlGeddawy, T., ElMaraghy, H., 2013. “Reactive design methodology for product family platforms, modularity and parts integration”. CIRP Journal of Manufacturing Science and Technology, 6(1), pp.34-43.
  • 2. Araz, M., Erden, Z., 2014. Behavioural representation and simulation of design concepts for systematic conceptual design of mechatronic systems using Petri Nets. International Journal of Production Research, 52(2), pp. 563-583.
  • 3. Aydın, M., Ulutaş, B.H., 2016. “A new methodology to cluster derivative product modules: an application”. International Journal of Production Research, 54(23), pp.7091-7099.
  • 4. Ayhan, E., Erden, Z., 2016. “Implementation of Function Structure Heuristics for Modular Design of an Educational Mechatronic Product Family”. Proceedings of the 17th Int. Conf. on Machine Design and Production (UMTIK 2016), July 12-15, Bursa, Turkey.
  • 5. Browning, T. R., (2001). Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Transactions on Engineering Management, 48(3), pp. 292-306.
  • 6. Bonvoisin, J., Halstenberg, F., Buchert, T., Stark, R., 2016. "A systematic literature review on modular product design", Journal of Engineering Design, 27(7), 488-514.
  • 7. Buur, J., 1990. A Theoretical Approach to Mechatronics Design. Lyngby, Denmark: Institute for Engineering Design
  • 8. Dahmus, J.B., Gonzales-Zugasti, J.P. and Otto, K.N., 2001. Modular Product Architecture. Design Studies, 22(5), pp.409-424.
  • 9. Erden, A., 2007. Mekatronik Mühendisliği-Kavramlar ve Uygulamalar. Ankara. Makina Mühendisleri Odası (MMO/2007/422).
  • 10. Erden, Z., 2014. “Conceptual Structuring of Modular Design Methodology for Mechatronic Systems: Behaviour Based Design Perspective”, Proceedings of the 16th Int. Conf. on Machine Design and Production (UMTIK 2014), June 30 - July 3, s. 87-100, İzmir, Turkey.
  • 11. Erden, Z., 2017. “Smazzle: A Demonstrative Case Study for Modular Design of Mechatronic Products”. Proceedings of the Int. Conf. on Engineering Technologies (ICENTE’17), December 7-9, Konya, Turkey.
  • 12. Erden, Z., 2018. “Development and Implementation of Behavioural Modules for Platform-Based Mechatronic Design”, Proceedings of the 12th Int. Symposium on Tools and Methods of Competitive Engineering (TMCE2018), May 7-11, Las Palmas de Gran Canaria, Spain, pp. 625-634.
  • 13. Erixon, G., 1998. Modular function deployment: a method for product modularisation. Royal Institute of Technology, Department of Manufacturing Systems, Assembly Systems Division.
  • 14. Gerherson, J.K., Prasad, G.J., Zhang, Y., 2003. Product Modularity: Definitions and Benefits. Journal of Engineering Design, 14(3), pp.295-313.
  • 15. Gu, P., Xue, D., Nee, A.Y.C., 2009. Adaptable Design: Concepts, Methods, and Applications. Proceedings of the IMechE, Part B: Journal of Engineering Manufacture, 223(11), pp. 1367-1387.
  • 16. Habib, T., 2014. System Design of Mechatronic Products Models and Methods to Utilize Mass Customization. Denmark. Aalborg University.
  • 17. Helmer, R., Yassine, A., Meier, C., 2010. Systematic Module and Interface Definition Using Component Design Structure Matrix. Journal of Engineering Design, 21(6), pp. 647–675.
  • 18. Huang, C.C., Kusiak, A., 1998. Modularity in Design of Products and Systems. IEEE Transactions on Systems, Man and Cybernetics, Part-A: Systems and Humans, 28(1), pp. 66–77.
  • 19. Huang, C.C., 2000. “Overview of modular product development”, Proceedings-National Science Council Republic of China Part a Physical Science and Engineering, 24(3), pp. 149-165.
  • 20. Hölttä, K.M., Otto, K.N., 2005. “Incorporating design effort complexity measures in product architectural design and assessment”. Design Studies, 26(5), pp.463-485.
  • 21. Höltta, K.M., Salonen, M.P., 2003. “Comparing three different modularity methods”. Proc. of the ASME 2003 Int. Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 533-541). American Society of Mechanical Engineers.
  • 22. Isermann, R., 2008. “Mechatronic systems-Innovative products with embedded control”. Control Engineering Practice, 16(1), pp.14-29.
  • 23. Jiao, J., Simpson, T. W., Siddique, Z., 2007. Product Family Design and Platform-Based Product Development: A State-of-the-Art Review. Journal of Intelligent Manufacturing, 18(5), pp.5-29.
  • 24. Li, Z., Cheng, Z., Feng, Y., Yang, J., 2013. An Integrated Method for Flexible Platform Modular Architecture Design. Journal of Engineering Design, 24(1), pp. 25-44.
  • 25. Li, B. M., Xie, S. Q., 2015. Module Partition for 3D CAD Assembly Models: A Hierarchical Clustering Method Based on Component Dependencies. International Journal of Production Research, 53(17), pp. 5224–5240
  • 26. Liang, W.Y., Huang, C.C., 2002. “The agent-based collaboration information system of product development”. International Journal of Information Management, 22(3), pp.211-224.
  • 27. Ma, J., Kremer, G.E.O., 2016. “A systematic literature review of modular product design (MPD) from the perspective of sustainability”. The International Journal of Advanced Manufacturing Technology, 86(5-8), pp.1509-1539.
  • 28. Nanda, J., Thevenot, H.J., Simpson, T.W., Stone, R.B., Bohm, M., Shhoter, S.B., 2007. Product Family Design Knowledge Representation, Aggregation, Reuse and Analysis. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 21(2), pp.173-192.
  • 29. Ozer, I., Erden, Z., 2019. Systematic Generation of a 3D DSM by Extracting Social Robot Behaviors from Literature. In Proceedings of the Design Society: International Conference on Engineering Design, 1(1), pp. 3731-3740, Cambridge University Press.
  • 30. Pahl, G., Beitz, W., 1996. Engineering Design-A Systematic Approach. London: The Design Council.
  • 31. Pimmler, T.U., Eppinger, S.D., 1994. “Integration Analysis of Product Decompositions”. In Proceedings of the ASME 6th International Conference on Design Theory and Methodology, Minneapolis, MN.
  • 32. Qiao, L., Efatmaneshnik, M., Ryan, M., Shoval S., 2017. Product modular analysis with design structure matrix using a hybrid approach based on MDS and clustering. Journal of Engineering Design, 28(6), pp. 433-456.
  • 33. Simpson, T.W., 2004. Product Platform Design and Customization: Status and Promise. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 18(1), pp.3-20.
  • 34. Stone, R.B., Wood, K.L., Crawford, R.H., 2000. A Heuristic Method for Identifying Modules for Product Architectures. Design Studies, 21(1), pp.5-31.
  • 35. Tseng, M., Jiao, J., 2001. Mass Customization. Handbook of Industrial Engineering, Gaviel Salvendy (Ed.), Wiley, New York.
  • 36. Ulrich, K., 1995. “The role of product architecture in the manufacturing firm”. Research Policy, 24(3), pp.419-440.
  • 37. Ulrich, K., Eppinger, S., 1995. Product Design and Development. Singapore. McGraw-Hill.
  • 38. van Beek, T.J., Erden, M.S., Tomiyama, T., 2010. Modular Design of Mechatronic Systems with Function Modelling. Mechatronics, 20(8), pp. 850-863.
  • 39. Wang, Z., Chen, L., Zhao, X., Zhou, W., 2014. “Modularity in building mass customization capability: The mediating effects of customization knowledge utilization and business process improvement”. Technovation, 34(11), pp.678-687.
  • 40. Yan, X., Stewart, B., 2010. Developing Modular Product Family Using GeMoCURE within an SME. International Journal of Manufacturing Research, 5(4), pp. 449-463.
  • 41. Yu, T., Yassine, A.A., Goldberg, D.E., 2007. An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms. Research in Engineering Design, 18(2), pp.91-109.
  • 42. Ziegler, B.P., 1989. DEVS Representation of Dynamic Systems: Event-Based Intelligent Control. Proceedings of the IEEE, 77(1), pp.72-80.
Year 2020, Volume: 18 Issue: 1, 24 - 36, 19.09.2020

Abstract

References

  • 1. AlGeddawy, T., ElMaraghy, H., 2013. “Reactive design methodology for product family platforms, modularity and parts integration”. CIRP Journal of Manufacturing Science and Technology, 6(1), pp.34-43.
  • 2. Araz, M., Erden, Z., 2014. Behavioural representation and simulation of design concepts for systematic conceptual design of mechatronic systems using Petri Nets. International Journal of Production Research, 52(2), pp. 563-583.
  • 3. Aydın, M., Ulutaş, B.H., 2016. “A new methodology to cluster derivative product modules: an application”. International Journal of Production Research, 54(23), pp.7091-7099.
  • 4. Ayhan, E., Erden, Z., 2016. “Implementation of Function Structure Heuristics for Modular Design of an Educational Mechatronic Product Family”. Proceedings of the 17th Int. Conf. on Machine Design and Production (UMTIK 2016), July 12-15, Bursa, Turkey.
  • 5. Browning, T. R., (2001). Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Transactions on Engineering Management, 48(3), pp. 292-306.
  • 6. Bonvoisin, J., Halstenberg, F., Buchert, T., Stark, R., 2016. "A systematic literature review on modular product design", Journal of Engineering Design, 27(7), 488-514.
  • 7. Buur, J., 1990. A Theoretical Approach to Mechatronics Design. Lyngby, Denmark: Institute for Engineering Design
  • 8. Dahmus, J.B., Gonzales-Zugasti, J.P. and Otto, K.N., 2001. Modular Product Architecture. Design Studies, 22(5), pp.409-424.
  • 9. Erden, A., 2007. Mekatronik Mühendisliği-Kavramlar ve Uygulamalar. Ankara. Makina Mühendisleri Odası (MMO/2007/422).
  • 10. Erden, Z., 2014. “Conceptual Structuring of Modular Design Methodology for Mechatronic Systems: Behaviour Based Design Perspective”, Proceedings of the 16th Int. Conf. on Machine Design and Production (UMTIK 2014), June 30 - July 3, s. 87-100, İzmir, Turkey.
  • 11. Erden, Z., 2017. “Smazzle: A Demonstrative Case Study for Modular Design of Mechatronic Products”. Proceedings of the Int. Conf. on Engineering Technologies (ICENTE’17), December 7-9, Konya, Turkey.
  • 12. Erden, Z., 2018. “Development and Implementation of Behavioural Modules for Platform-Based Mechatronic Design”, Proceedings of the 12th Int. Symposium on Tools and Methods of Competitive Engineering (TMCE2018), May 7-11, Las Palmas de Gran Canaria, Spain, pp. 625-634.
  • 13. Erixon, G., 1998. Modular function deployment: a method for product modularisation. Royal Institute of Technology, Department of Manufacturing Systems, Assembly Systems Division.
  • 14. Gerherson, J.K., Prasad, G.J., Zhang, Y., 2003. Product Modularity: Definitions and Benefits. Journal of Engineering Design, 14(3), pp.295-313.
  • 15. Gu, P., Xue, D., Nee, A.Y.C., 2009. Adaptable Design: Concepts, Methods, and Applications. Proceedings of the IMechE, Part B: Journal of Engineering Manufacture, 223(11), pp. 1367-1387.
  • 16. Habib, T., 2014. System Design of Mechatronic Products Models and Methods to Utilize Mass Customization. Denmark. Aalborg University.
  • 17. Helmer, R., Yassine, A., Meier, C., 2010. Systematic Module and Interface Definition Using Component Design Structure Matrix. Journal of Engineering Design, 21(6), pp. 647–675.
  • 18. Huang, C.C., Kusiak, A., 1998. Modularity in Design of Products and Systems. IEEE Transactions on Systems, Man and Cybernetics, Part-A: Systems and Humans, 28(1), pp. 66–77.
  • 19. Huang, C.C., 2000. “Overview of modular product development”, Proceedings-National Science Council Republic of China Part a Physical Science and Engineering, 24(3), pp. 149-165.
  • 20. Hölttä, K.M., Otto, K.N., 2005. “Incorporating design effort complexity measures in product architectural design and assessment”. Design Studies, 26(5), pp.463-485.
  • 21. Höltta, K.M., Salonen, M.P., 2003. “Comparing three different modularity methods”. Proc. of the ASME 2003 Int. Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 533-541). American Society of Mechanical Engineers.
  • 22. Isermann, R., 2008. “Mechatronic systems-Innovative products with embedded control”. Control Engineering Practice, 16(1), pp.14-29.
  • 23. Jiao, J., Simpson, T. W., Siddique, Z., 2007. Product Family Design and Platform-Based Product Development: A State-of-the-Art Review. Journal of Intelligent Manufacturing, 18(5), pp.5-29.
  • 24. Li, Z., Cheng, Z., Feng, Y., Yang, J., 2013. An Integrated Method for Flexible Platform Modular Architecture Design. Journal of Engineering Design, 24(1), pp. 25-44.
  • 25. Li, B. M., Xie, S. Q., 2015. Module Partition for 3D CAD Assembly Models: A Hierarchical Clustering Method Based on Component Dependencies. International Journal of Production Research, 53(17), pp. 5224–5240
  • 26. Liang, W.Y., Huang, C.C., 2002. “The agent-based collaboration information system of product development”. International Journal of Information Management, 22(3), pp.211-224.
  • 27. Ma, J., Kremer, G.E.O., 2016. “A systematic literature review of modular product design (MPD) from the perspective of sustainability”. The International Journal of Advanced Manufacturing Technology, 86(5-8), pp.1509-1539.
  • 28. Nanda, J., Thevenot, H.J., Simpson, T.W., Stone, R.B., Bohm, M., Shhoter, S.B., 2007. Product Family Design Knowledge Representation, Aggregation, Reuse and Analysis. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 21(2), pp.173-192.
  • 29. Ozer, I., Erden, Z., 2019. Systematic Generation of a 3D DSM by Extracting Social Robot Behaviors from Literature. In Proceedings of the Design Society: International Conference on Engineering Design, 1(1), pp. 3731-3740, Cambridge University Press.
  • 30. Pahl, G., Beitz, W., 1996. Engineering Design-A Systematic Approach. London: The Design Council.
  • 31. Pimmler, T.U., Eppinger, S.D., 1994. “Integration Analysis of Product Decompositions”. In Proceedings of the ASME 6th International Conference on Design Theory and Methodology, Minneapolis, MN.
  • 32. Qiao, L., Efatmaneshnik, M., Ryan, M., Shoval S., 2017. Product modular analysis with design structure matrix using a hybrid approach based on MDS and clustering. Journal of Engineering Design, 28(6), pp. 433-456.
  • 33. Simpson, T.W., 2004. Product Platform Design and Customization: Status and Promise. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 18(1), pp.3-20.
  • 34. Stone, R.B., Wood, K.L., Crawford, R.H., 2000. A Heuristic Method for Identifying Modules for Product Architectures. Design Studies, 21(1), pp.5-31.
  • 35. Tseng, M., Jiao, J., 2001. Mass Customization. Handbook of Industrial Engineering, Gaviel Salvendy (Ed.), Wiley, New York.
  • 36. Ulrich, K., 1995. “The role of product architecture in the manufacturing firm”. Research Policy, 24(3), pp.419-440.
  • 37. Ulrich, K., Eppinger, S., 1995. Product Design and Development. Singapore. McGraw-Hill.
  • 38. van Beek, T.J., Erden, M.S., Tomiyama, T., 2010. Modular Design of Mechatronic Systems with Function Modelling. Mechatronics, 20(8), pp. 850-863.
  • 39. Wang, Z., Chen, L., Zhao, X., Zhou, W., 2014. “Modularity in building mass customization capability: The mediating effects of customization knowledge utilization and business process improvement”. Technovation, 34(11), pp.678-687.
  • 40. Yan, X., Stewart, B., 2010. Developing Modular Product Family Using GeMoCURE within an SME. International Journal of Manufacturing Research, 5(4), pp. 449-463.
  • 41. Yu, T., Yassine, A.A., Goldberg, D.E., 2007. An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms. Research in Engineering Design, 18(2), pp.91-109.
  • 42. Ziegler, B.P., 1989. DEVS Representation of Dynamic Systems: Event-Based Intelligent Control. Proceedings of the IEEE, 77(1), pp.72-80.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Araştırma, Geliştirme ve Uygulama Makaleleri
Authors

Zühal Erden

Publication Date September 19, 2020
Submission Date January 8, 2020
Published in Issue Year 2020 Volume: 18 Issue: 1

Cite

Vancouver Erden Z. Kişiselleştirilmiş Robot Tasarımı için Kavramsal Tasarım Metodolojisi. MATİM. 2020;18(1):24-36.