Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 18 Sayı: 1, 1 - 8, 19.09.2020

Öz

Kaynakça

  • 1. Hill, R., “A Theory of the Yielding and Plastic Flow of Anisotropic Metals”, Proc. Soc. London A, 1948, vol. 193, pp. 281-97.
  • 2. Hill, R.; The Mathematical Theory of Plasticity, Oxford University Press Inc., New York, 1950.
  • 3. Gotoh, M., “A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)-I”. Int. J. Mech. Sci., 1977, vol.19, pp. 505-12.
  • 4. Gotoh, M., “A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)-II”. Int. J. Mech. Sci., 1977, vol.19, pp. 513-20.
  • 5. Tong, W., “On the Certification of Positive and Convex Gotoh’s Fourth-Order Yield Function”. Numisheet 2018 Conference Series, 2018, vol. 1063, pp. 1-6.
  • 6. Tong, W., “Generalized Fourth-Order Hill’s 1979 Yield Function for Modeling Sheet Metals in Plane Stress”. Acta Mech., 2016, vol. 227, pp. 2719-33.
  • 7. Hill, R., “Theoretical Plasticity of Textured Aggregates”, Math. Proc. Camb. Philos. Soc., 1979, vol. 85, pp. 179-91.
  • 8. Cazacu, O., Barlat, F., “Generalization of Drucker’s Yield Criterion in Orthotropy”, Math. Mech. Solids, 2001, vol. 6, pp. 613-630.
  • 9. Hu, W., “Characterized Behaviors and Corresponding Yield Criterion of Anisotropic Sheet Metals”, Mat. Sci. Eng. A, 2003, vol. 345, pp. 139-44.
  • 10. Hu, W., “An Orthotropic Yield Criterion in a 3-D General Stress State”, Int. J. Plast., 2005, vol. 21, pp. 1771-96.
  • 11. Soare, S., C., Yoon, J.,W., Cazacu, O., “On the Use of Homogeneous Polynomials to Develop Anisotropic Yield Functions with Applications to Sheet Forming”, Int. J. Plast., 2008, vol. 24, pp. 915-44.
  • 12. Suan, W., Yuan, Y.,X; Optimization Theory and Methods Nonlinear Programming, Springer Science Business Media, New York, 2006.
  • 13. Hallquist, J., O.; Ls-Dyna Theory Manual. Livermore Software Technology Corporation, California, 2006.
  • 14. Simo, J.C., Hughes, T.,J.,R.; Computational Inelasticity, Springer Verlag, New York, 1998.
  • 15. Chaboche, J., L., Cailletaud, G., “Integration Methods for Complex Plastic Constitutive Equations”, Comput. Method. Appl. Mech. Eng., 1996, vol. 133, pp. 125-55.
  • 16. Firat, M., Kaftanoglu, B., Eser, O., “Sheet Metal Forming Analyses with an Emphasis on the Springback Deformation”, J. Mater. Process. Tech., 2008, vol. 196, pp. 135-48.
  • 17. Firat, M., “Computer Aided Analysis and Design of Sheet Metal Forming Processes: Part III: Stamping Die-Face Design”, Mater. Design, 2007, vol. 28(4), pp. 1311-20.
  • 18. Yadav, A.D.: Process Analysis and Design in Stamping and Sheet Hydroforming, Doctoral Thesis, Ohio State University, 2008.

Dördüncü Dereceden Polinom Türü Bir Akma Fonksiyonu Kullanarak AISI 304 Paslanmaz Çelik Sacın Anizotropik Davranışının Modellenmesi

Yıl 2020, Cilt: 18 Sayı: 1, 1 - 8, 19.09.2020

Öz

Bu çalışmada ortotropik, kuadratik olmayan, homojen polinom türü bir akma kriteri tanımlanmış ve açık zaman integrasyon yöntemi ile kriterin sac şekillendirme analizlerinde kullanılabilmesi için sonlu eleman uygulaması sunulmuştur. Uygulamanın performansı, ilk olarak AISI (304) paslanmaz çelik çelik sacın çekme testi simulasyonlarıyla değerlendirilmiş olup, akma gerilmesi oranı ve anizotropi katsayısının yöne bağlı değişimleri tahmin edilmiştir. Ardından, dikdörtgen bir kabın derin çekme simulasyonu gerçekleştirilmiş ve hesaplanan kalınlık ve taban geometri profili ölçüm sonuçlarıyla değerlendirilmiştir. Her iki deformasyon prosesi için yapılan karşılaştırmalar, dördüncü derece polinom türü akma kriterinin AISI (304) paslanmaz çelik sacın anizotropik davranışını doğru bir şekilde tanımlayabildiğini göstermiştir.

Kaynakça

  • 1. Hill, R., “A Theory of the Yielding and Plastic Flow of Anisotropic Metals”, Proc. Soc. London A, 1948, vol. 193, pp. 281-97.
  • 2. Hill, R.; The Mathematical Theory of Plasticity, Oxford University Press Inc., New York, 1950.
  • 3. Gotoh, M., “A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)-I”. Int. J. Mech. Sci., 1977, vol.19, pp. 505-12.
  • 4. Gotoh, M., “A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)-II”. Int. J. Mech. Sci., 1977, vol.19, pp. 513-20.
  • 5. Tong, W., “On the Certification of Positive and Convex Gotoh’s Fourth-Order Yield Function”. Numisheet 2018 Conference Series, 2018, vol. 1063, pp. 1-6.
  • 6. Tong, W., “Generalized Fourth-Order Hill’s 1979 Yield Function for Modeling Sheet Metals in Plane Stress”. Acta Mech., 2016, vol. 227, pp. 2719-33.
  • 7. Hill, R., “Theoretical Plasticity of Textured Aggregates”, Math. Proc. Camb. Philos. Soc., 1979, vol. 85, pp. 179-91.
  • 8. Cazacu, O., Barlat, F., “Generalization of Drucker’s Yield Criterion in Orthotropy”, Math. Mech. Solids, 2001, vol. 6, pp. 613-630.
  • 9. Hu, W., “Characterized Behaviors and Corresponding Yield Criterion of Anisotropic Sheet Metals”, Mat. Sci. Eng. A, 2003, vol. 345, pp. 139-44.
  • 10. Hu, W., “An Orthotropic Yield Criterion in a 3-D General Stress State”, Int. J. Plast., 2005, vol. 21, pp. 1771-96.
  • 11. Soare, S., C., Yoon, J.,W., Cazacu, O., “On the Use of Homogeneous Polynomials to Develop Anisotropic Yield Functions with Applications to Sheet Forming”, Int. J. Plast., 2008, vol. 24, pp. 915-44.
  • 12. Suan, W., Yuan, Y.,X; Optimization Theory and Methods Nonlinear Programming, Springer Science Business Media, New York, 2006.
  • 13. Hallquist, J., O.; Ls-Dyna Theory Manual. Livermore Software Technology Corporation, California, 2006.
  • 14. Simo, J.C., Hughes, T.,J.,R.; Computational Inelasticity, Springer Verlag, New York, 1998.
  • 15. Chaboche, J., L., Cailletaud, G., “Integration Methods for Complex Plastic Constitutive Equations”, Comput. Method. Appl. Mech. Eng., 1996, vol. 133, pp. 125-55.
  • 16. Firat, M., Kaftanoglu, B., Eser, O., “Sheet Metal Forming Analyses with an Emphasis on the Springback Deformation”, J. Mater. Process. Tech., 2008, vol. 196, pp. 135-48.
  • 17. Firat, M., “Computer Aided Analysis and Design of Sheet Metal Forming Processes: Part III: Stamping Die-Face Design”, Mater. Design, 2007, vol. 28(4), pp. 1311-20.
  • 18. Yadav, A.D.: Process Analysis and Design in Stamping and Sheet Hydroforming, Doctoral Thesis, Ohio State University, 2008.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma, Geliştirme ve Uygulama Makaleleri
Yazarlar

Bora Şener

Elif Sıla Selek Kılıçarslan

Mehmet Fırat

Yayımlanma Tarihi 19 Eylül 2020
Gönderilme Tarihi 26 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 18 Sayı: 1

Kaynak Göster

Vancouver Şener B, Selek Kılıçarslan ES, Fırat M. Dördüncü Dereceden Polinom Türü Bir Akma Fonksiyonu Kullanarak AISI 304 Paslanmaz Çelik Sacın Anizotropik Davranışının Modellenmesi. MATİM. 2020;18(1):1-8.