Review
BibTex RIS Cite

Eklemeli İmalatla Üretilen Kafes Yapıların Mekanik Özellikleri Üzerine Etki Eden Faktörler

Year 2021, Volume: 19 Issue: 2, 64 - 81, 25.10.2021

Abstract

Eklemeli imalatla üretilen kafes yapıların mekanik özellikleri, ana malzemenin mekanik özellikleri, birim hücre ve dikme şekli ve boyutu, birim hücrenin kafes yapı içindeki dizilim şekli, dikme ve düğüm noktalarının birleşimi, dikmenin katı veya içi boş olması, ısıl işlem, dikme / birim hücre oryantasyonu, inşa yönü ve gözenek boyutu gibi birçok parametreden etkilenmektedir. Havacılık ve uzay sanayii, otomotiv sanayii ve biomedikal sanayii gibi farklı alanlarda kullanımı hızla artan kafes yapıların, eklemeli imalatla üretilmesi neticesinde sahip olacağı mekanik özelliklere etki edecek faktörlerin bilinmesi, tasarım ve üretim aşamasında bu faktörlerin göz önüne alınmasını sağlayacağı için önem arz etmektedir. Bu çalışmada, eklemeli imalatla üretilen kafes yapıların mekanik özellikleri üzerine etki eden parametreler ve ileriki çalışmalar konusunda detaylı bilgiler verilecektir.

Supporting Institution

TÜBİTAK

Project Number

5158001

Thanks

Bu makale, TÜBİTAK Teknoloji ve Yenilik Destek Programı kapsamında desteklenmiştir (Proje No: 5158001).

References

  • Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M. 2018. “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges”, Current Opinion in Solid State and Material Science, 22 (3): 75-99.
  • Wauthle, R., Vrancken, B., Beynaerts, B., Jorissena, K., Schrooten, J., Kruth, J. P., Humbeeck, J. V. 2015. “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures”, Additive Manufacturing, 5: 77-84.
  • Nakajima, H. 2007. “Fabrication, properties and application of porous metals with directional pores”, Progress in Materials Science, 52 (7): 1091-1173.
  • Dallago, M., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M. 2019. “On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via Selective Laser Melting”, International Journal of Fatigue, 124: 348-360.
  • Rashed, M. G., Ashraf, M., Mines, R. A. W., Hazell, P. J. 2016. “Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications”, Materials & Design, 95:518-533.
  • Hammetter, C. I., Rinaldi, R. G., Zok, F. W. 2013. “Pyramidal lattice structures for high strength and energy absorption”, Journal of Applied Mechanics, 80 (4): 041015.
  • Crupi, V., Kara, E., Epasto, G., Guglielmino, E., Aykul, H. 2017. “Static behavior of lattice structures produced via direct metal laser sintering technology”, Materials and Design, 135: 246-256.
  • Parthasarathy, J., Starly, B., Ramana, S., Christensen, A. 2010. “Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)”, Journal of the Mechanical Behavior of Biomedical Materials 3 (3): 249-259.
  • Parthasarathy, J., Starly, B., Raman, S. 2011. “A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications”, Journal of Manufacturing Processes, 13(2): 160-170.
  • Schwerdtfeger, J., Schury, F., Stingl, M., Wein, F., Singer, R. F., Körner, C. 2012. “Mechanical characterisation of a periodic auxetic structure produced by SEBM”, Physica Status Solidi B, 249 (7): 1347-1352.
  • Warmuth, F., Osmanlic, F., Adler, L., Lodes, M. A., Körner, C. 2016. “Fabrication and characterization of a fully auxetic 3D lattice structure via selective electron beam melting”, Smart Mater. Struct. 26 (2): 025013.
  • Epasto, G., Palomba, G., D'Andrea, D., Guglielmino, E., Di Bella, S., Traina, F. 2019. “Ti-6Al-4V ELI microlattice structures manufactured by electron beam melting: Effect of unit cell dimensions and morphology on mechanical behaviour”, Materials Science & Engineering A, 753: 31-41.
  • Gümrük, R., Mines, R. A. W. 2013. “Compressive behaviour of stainless steel micro-lattice structures”, International Journal of Mechanical Sciences, 68: 125-139.
  • Vrana, R., Koutny, D., Palousek, D. 2016. “Impact resistance of different types of lattice structures manufactured by slm”, Modern Machinery (MM) Science Journal, December: 1579-1585.
  • Wang, L., Kang, J., Sun, C., Li, D., Cao, Y., Jin, Z. 2017. “Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants”, Materials & Design, 133: 62-68.
  • Amani, Y., Dancette, S., Delroisse, P., Simar, A.,Maire, E. 2018. “Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element approaches”, Acta Materialia, 159: 395-407.
  • Dong, Z., Zhang, X., Shi, W., Zhou, H., Lei, H., Liang, J. 2018. “Study of size effect on microstructure and mechanical properties of AlSi10Mg samples made by selective laser melting”, Materials, 11 (12): 2463.
  • Yu, T., Hyer, H., Sohn, Y., Bai, Y., Wu, D. 2019. “Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting”, Materials and Design, 182: 108062.
  • Großmann, A., Gosmann, J., Mittelstedt, C. 2019. “Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties”, Materials Science and Engineering: A, 766: 138356.
  • Gangireddy, S., Komarasamy, M., Faierson, E. J., Mishra, R. S. 2019. High strain rate mechanical behavior of Ti-6Al-4V octet lattice structures additively manufactured by selective laser melting (SLM)”, Materials Science & Engineering A, 745: 231.239.
  • Smith, M., Cantwell, W. J., Guan, Z., Tsopanos, S., Theobald, M. D., Nurick, G. N., Langdon, G. S. 2011. “The quasi-static response of steel lattice structures”, Journal of Sandwich Structures & Materials, 13 (4): 479-501.
  • Contuzzi, N., Campanelli, S. L., Casavola, C., Lamberti, L. 2013. “Manufacturing and characterization of 18Ni Marage 300 lattice components by selective laser melting”, Materials, 6 (8): 3451-3468.
  • Liu, W., Song, H., Wang, Z., Wang, J., Huang, C. 2019. “Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method”, Materials and Design, 181: 108065.
  • Wally, Z. J., Haque, A. M., Feteira, A., Claeyssens, F.,Goodall, R., Reilly, G. C. 2019. “Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications”, Journal of the Mechanical Behavior of Biomedical Materials, 90: 20-29.
  • Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A. 2017. “Compressive failure modes and energy absorption in additively manufactured double gyroid lattices”, Additive Manufacturing, 16: 24-29.
  • Flores, I., Kretzschmar, N., Azman, A. H., Chekurov, S., Pedersen, D. B., Chaudhuri, A. 2020. “Implications of lattice structures on economics and productivity of metal powder bed fusion”, Additive Manufacturing, 31: 100947.
  • Hao, L., Raymont, D., Yan, C., Hussein, A., Young, P. 2011. “Design and additive manufacturing of cellular lattice structures”, The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP), At Leiria, Portugal.
  • Horn, T. J., Harrysson, O. L. A., Marcellin-Little, D. J., West, H. A., Lascelles, B. D. X., Aman, R. 2014. “Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting”, Additive Manufacturing, 1-4: 2-11.
  • Heinl, P., Körner, C., Singer, R. F. 2008. “Selective electron beam melting of cellular titanium: mechanical properties”, Advanced Engineering Materials, 10 (9): 882-888.
  • Labeas, G. N., Sunaric, M. M. 2010. “Investigation on the static response and failure process of metallic open lattice cellular structures”, Strain, 46 (2): 195-204.
  • Yan, C.Z., Hao, L., Hussein, A., Raymont, D. 2012. “Evaluations of cellular lattice structures manufactured using selective laser melting”, International Journal of Machine Tools and Manufacture, 62: 32-38.
  • Hussein, A., Hao, L., Yan, C., Everson, R., Young, P. 2013. “Advanced lattice support structures for metal additive manufacturing”, Journal of Materials Processing Technology, 213: 1019-1026.
  • Ahmadi, S. M., Campoli, G., Yavari, S. A., Sajadi, B., Wauthle, R., Schrooten, J., Weinans, H., Zadpoor, A. A. 2014. “Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells”, Journal of the Mechanical Behavior of Biomedical Materials, 34: 106-115.
  • Yan, C., Hao, L., Hussein, A., Bubb, S. L., Young, P., Raymont, D. 2014. “Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering”, Journal of Materials Processing Technology, 214: 856-864.
  • Yan, C., Hao, L., Hussein, A., Young, P., Huang, J., Zhu, W. 2015. “Microstructure and mechanical properties of aluminum alloy cellular lattice structures manufactured by direct metal laser sintering”, Materials Science & Engineering A, 628: 238-246.
  • Yang, L. 2015 “Experimental-assisted design development for an octahedral cellular structure using additive manufacturing”, Rapid Prototyping Journal, 21 (2): 168-176.
  • Xiao, L. J., Song, W. D., Wang, C., Liu, H. Y., Tang, H. P., Wang, J. Z. 2015. “Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure”, Materials Science and Engineering A, 640: 375-384.
  • Du Plessis, A., Kouprianoff, D. P., Yadroitsava, I., Yadroitsev, I. 2018. “Mechanical properties and in situ deformation imaging of microlattices manufactured by laser based powder bed fusion”, Materials, 11 (9): 1663.
  • Ataee, A., Li, Y., Brandt, M., Wen, C. 2018. “Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications”, Acta Materialia, 158: 354-368.
  • Ataee, A., Li, Y., Fraser, D., Song, G., Wen, C. 2018. “Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications”, Materials & Design, 137: 345-354.
  • Ma, Z., Zhang, D.Z., Liu, F., Jiang, J., Zhao, M., Zhang, T. 2018. “Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption”, Materials & Design, 187: 108406.
  • Osman, M. M., Shazly, M., El-Danaf, E. A., Jamshidi, P., Attallah, M. M. 2020. “Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications”, Composites Part B: Engineering,184: 107715.
  • Peng, C.,Tran, P., Nguyen-Xuan, H., Ferreira, A. J. M. 2020. “Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach”, Composite Structures, 235: 111821.
  • Yuan, L., Ding, S., Wen, C. 2019. “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review”, Bioactive Materials, 4: 56-70.
  • Xu, Y., Zhang, D., Zhou, Y., Wang, W., Cao, X. 2017. “Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM)”, Materials, 10 (9): 1048.
  • Xu, G., Kou, H., Liu, X., Li, F., Li, J., Zhou, L. 2017. “Microstructure and mechanical properties of porous titanium based on controlling Young's modulus”, Rare Metal Materials and Engineering, 46(8): 2041-2048.
  • Wei, K., Yang, Q., Ling, B., Xie, H., Qu, Z., Fang, D. 2018. “Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting”, Extreme Mechanics Letters, 23: 41-48.
  • Yan, X., Li, Q., Yin, S., Chen, Z., Jenkins, R., Chen, C., Wang, J., Ma, W., Bolot, R., Lupoi, R., Ren, Z., Liao, H., Liu, M. 2019. “Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting”, Journal of Alloys and Compounds, 782: 209-223.
  • Xu, Y., Zhang, D., Hu, S., Chen, R., Gu, Y., Kong, X., Tao, J., Jiang, Y. 2019. “Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure”, Journal of the Mechanical Behavior of Biomedical Materials, 99: 225-239.
  • Wei, K., Yang, Q., Yang, X., Tao, Y., Xie, H., Qu, Z., Fang, D. 2020. “Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting”, Thin Walled Structures, 146: 106189.
  • Zhang, X.-Y., Fang, G., Leeflang, S., Zadpoor, A. A., Zhou, J. 2018. “Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials”, Acta Biomaterialia, 84: 437-452.
  • Wu, Y. C., Kuo, C. N., Shie, M. Y., Su, Y. L., Wei, L. J., Chen, S. Y., Huang, J. C. 2018. “Structural design and mechanical response of gradient porous Ti-6Al-4V fabricated by electron beam additive manufacturing”, Materials and Design, 158: 256-265.
  • Ravari, M. K., Esfahani, S. N., Andani, M. T., Kadkhodaei, M., Ghaei, A., Karaca, H., Elahinia, M. 2016. “On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures”, Smart Materials and Structures, 25 (2): 025008.
  • Vrána, R., Červinek, O., Maňas, P., Koutný, D., Paloušek, D. 2018. “Dynamic loading of lattice structure made by selective laser melting-numerical model with substitution of geometrical imperfections”, Materials, 11(11): 2129.
  • Liu, F., Zhang, D. Z., Zhang, P., Zhao, M., Jafar, S. 2018. “Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting”, Materials, 11 (3): 374.
  • Cao, X., Duan, S., Liang, J., Wen, W., Fang, D. 2018. “Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section”, International Journal of Mechanical Sciences,145: 53-63.
  • Bai, L., Yi, C., Chen, X., Sun, Y., Zhang, J. 2019. “Effective design of the graded strut of BCC lattice structure for improving mechanical properties”, Materials, 12 (13): 2192.
  • Maskery, I., Aremu, A.O., Parry, L., Wildman, R.D., Tuck, C.J., Ashcroft, I.A. 2018. “Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading”, Materials and Design, 155: 220-232.
  • Yang, L., Yan, C., Fan, H., Li, Z., Cai, C., Chen, P., Shi, Y., Yang, S. 2019. “Investigation on the orientation dependence of elastic response in Gyroid cellular structures”, Journal of the Mechanical Behavior of Biomedical Materials, 90: 73-85.
  • Gümrük, R., Mines, R., Karadeniz, S. 2013. “Static mechanical behaviours of stainless-steel micro-lattice structures under different loading conditions”, Materials Science and Engineering A, 586: 392-406.
  • Yang, L., Mertens, R., Ferrucci, M., Yan, C., Shi, Y., Yang, Y. 2019. “Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties”, Materials & Design, 162: 394-404.
  • Nazir, A., Abate, K. M., Kumar, A., Jeng, J-Y. 2019. “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures”, The International Journal of Advanced Manufacturing Technology, 104 (9-12): 3489-3510.
  • Shen, Y., Cantwell, W. J., Mines, R. A. W., Ushijima, K. 2012. “The properties of lattice structures manufactured using selective laser melting”, Advanced Materials Research, 445: 386-391.
  • Smith, M., Guan, Z., Cantwell, W. 2013. “Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique”, International Journal of Mechanical Sciences, 67: 28-41.
  • Hussein, A. Y. 2013. “The development of lightweight cellular structures for metal additive manufacturing”, PhD Thesis, University of Exeter, UK.
  • Weißmann, V., Bader, R., Hansmann, H., Laufer, N. 2016. “Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open porous scaffolds”, Materials and Design, 95: 188-197.
  • Yánez, A., Herrera, A., Martel, O., Monopoli, D., Afonso, H. 2016. “Compressive behavior of gyroid lattice structures for human cancellous bone implant applications”, Materials Science and Engineering C, 68: 445-448.
  • Cansizoglu, O., Harrysson, O., Cormier, D., West, H., Mahale, T. 2008. “Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting”, Materials Science and Engineering: A, 492(1-2):468–474.
  • Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D. 2012. “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior”, Materials and Design, 34: 159-169.
  • Alsalla, H., Hao, L., Smith, C. 2016. “Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique”, Material Science and Engineering A, 669: 1-6.
  • Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H., Laufer, N. 2017. “Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation”, Metals, 7(3): 91.
  • Dong, Z., Liu, Y., Li, W., Liang, J. 2019. “Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices”, Journal of Alloys and Compounds, 791: 490-500.
  • Tallon, J., Cyr, E., Lloyd, E., Mohammadi, M. 2020. “Crush performance of additively manufactured maraging steel microlattice reinforced plates”, Engineering Failure Analysis, 108: 104231.
  • Gu, H., Li, S., Pavier, M., Attallah, M. M., Paraskevoulakos, C., Shterenlikht, A. 2019. “Fracture of three-dimensional lattices manufactured by selective laser melting”, International Journal of Solids and Structures, 180-181: 147-159.
  • Delroisse, P., Jacques, P. J., Maire, E., Rigo, O., Simar, A. 2017. “Effect of strut orientation on the microstructure heterogeneities in AlSi10Mg lattices processed by selective laser melting”, Scripta Materialia, 141: 32-35.
  • Sing, S. L., Wiria, F. E., Yeong, W. Y. 2018. “Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior”, Robotics and Computer–Integrated Manufacturing 49: 170-180.
  • Yadroitsev, I., Thivillon, L., Bertrand, Ph., Smurov, I. 2007. “Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder”, Applied Surface Science, 254 (4): 980-983.
  • Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., Huang, W. 2010. “Development of highly porous titanium scaffolds by selective laser melting”, Material Letters, 64: 674-676.
  • Tsopanos, S., Mines, R. A. W., McKown, S., Shen, Y., Cantwell, W. J., Brooks, W., Sutcliffe, C. J. 2010. “The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures”, Journal of Manufacturing Science and Engineering, 132 (4): 041011.
  • Zhang, S., Wei, Q., Cheng, L., Li, S., Shi, Y. S. 2014. “Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials and Design, 63: 185-193.
  • Campanelli, S. L., Contuzzi, N., Ludovico, A. D., Caiazzo, F., Cardaropoli, F., Sergi, V. 2014. “Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting”, Materials, 7 (6): 4803–4822.
  • List, F. A., Dehoff, R. R., Lowe, L. E., Sames, W. J. 2014. “Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing”, Materials Science and Engineering: A, 615:191-197.
  • Qiu, C., Yue, S., Adkins, N. J. E., Ward, M., Hassanin, H., Lee, P. D., Withers, P. J., Attallah, M. M. 2015. “Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting”, Materials Science & Engineering A, 628: 188-197.
  • Sing, S. L., Yeong, W. Y., Wiria, F. E., Tay, B. Y. 2016. “Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method”, Experimental Mechanics, 56 (5): 735-748.
  • Vrána, R., Koutný, D., Paloušek, D., Pantělejev, L., Jaroš, J., Zikmund, T., Kaiser, J. 2018. “Selective laser melting srategy for fabrication of thin struts usable in lattice structures”, Materials, 11 (9): 1763.
  • Li, C., Lei, H., Liu, Y., Zhang, X., Xiong, J., Zhou, H., Fang, D. 2018. “Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting”, International Journal of Mechanical Sciences, 145: 389-399.
  • Onal, E., Medvedev, A. E., Leeflang, M. A., Molotnikov, A., Zadpoor, A.A. 2019. “Novel microstructural features of selective laser melted lattice struts fabricated with single point exposure scanning”, Additive Manufacturing, 29: 100785.
  • Velasco-Castro, M., Hernandez-Nava, E., Figueroa, I.A., Todd, I., Goodall, R. 2019. “The effect of oxygen pickup during selective laser melting on the microstructure and mechanical properties of Ti–6Al–4V lattices”, Heliyon, 5: e02813.
  • Tan, Z., Zhang, X., Zhou, Z., Zhou, Z., Yang, Y., Guo, X., Wang, Z., Wu, X., Wang, G., He, D. 2019. “Thermal effect on the microstructure of the lattice structure Cu-10Sn alloy fabricated through selective laser melting”, Journal of Alloys and Compounds, 787: 903-908.
  • Salem, H., Carter, L.N., Attallah, M.M., Salem, H.G. 2019. “Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Science & Engineering A, 767: 138387.
  • Yan, C., Hao, L., Hussein, A., Young, P. 2015. “Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting”, Journal of the Mechanical Behavior of Biomedical Materials, 51: 61-73.
  • Yan, C., Hao, L., Hussein, A., Wei, Q., Shi, Y. 2017. “Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting”, Materials Science and Engineering: C, 75: 1515-1524.
  • Zhang, M., Yang, Y., Wang, D., Xiao, Z., Song, C., Weng, C. 2018. “Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting”, Materials Science and Engineering A, 736: 288- 297.
  • Yan, X., Lupoi, R., Wu, H., Ma, W., Liu, M., O’Donnell, G., Yin, S. 2019. “Effect of hot isostatic pressing (HIP) treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Letters, 255: 126537.
  • Dallago, M., Fontanari, V., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M. 2017. “Fatigue properties of Ti6Al4V cellular specimens fabricated via SLM: CAD vs real geometry”, Structural Integrity Procedia, 7: 116-123.
  • Brenne, F., Niendorf, T., Maier, H. J. 2013. “Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load”, Journal of Materials Processing Technology, 213 (9): 1558-1564.
  • Dong, G., Tang, Y., Zhao, Y. F. 2017. “A survey of modeling of lattice structures fabricated by additive manufacturing”, Journal of Mechanical Design, 139(10): 100906.
  • Helou, M., Kara, S. 2018. “Design, analysis and manufacturing of lattice structures: an overview”, International Journal of Computer Integrated Manufacturing, 31 (3): 243-261.
Year 2021, Volume: 19 Issue: 2, 64 - 81, 25.10.2021

Abstract

Project Number

5158001

References

  • Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M. 2018. “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges”, Current Opinion in Solid State and Material Science, 22 (3): 75-99.
  • Wauthle, R., Vrancken, B., Beynaerts, B., Jorissena, K., Schrooten, J., Kruth, J. P., Humbeeck, J. V. 2015. “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures”, Additive Manufacturing, 5: 77-84.
  • Nakajima, H. 2007. “Fabrication, properties and application of porous metals with directional pores”, Progress in Materials Science, 52 (7): 1091-1173.
  • Dallago, M., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M. 2019. “On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via Selective Laser Melting”, International Journal of Fatigue, 124: 348-360.
  • Rashed, M. G., Ashraf, M., Mines, R. A. W., Hazell, P. J. 2016. “Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications”, Materials & Design, 95:518-533.
  • Hammetter, C. I., Rinaldi, R. G., Zok, F. W. 2013. “Pyramidal lattice structures for high strength and energy absorption”, Journal of Applied Mechanics, 80 (4): 041015.
  • Crupi, V., Kara, E., Epasto, G., Guglielmino, E., Aykul, H. 2017. “Static behavior of lattice structures produced via direct metal laser sintering technology”, Materials and Design, 135: 246-256.
  • Parthasarathy, J., Starly, B., Ramana, S., Christensen, A. 2010. “Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)”, Journal of the Mechanical Behavior of Biomedical Materials 3 (3): 249-259.
  • Parthasarathy, J., Starly, B., Raman, S. 2011. “A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications”, Journal of Manufacturing Processes, 13(2): 160-170.
  • Schwerdtfeger, J., Schury, F., Stingl, M., Wein, F., Singer, R. F., Körner, C. 2012. “Mechanical characterisation of a periodic auxetic structure produced by SEBM”, Physica Status Solidi B, 249 (7): 1347-1352.
  • Warmuth, F., Osmanlic, F., Adler, L., Lodes, M. A., Körner, C. 2016. “Fabrication and characterization of a fully auxetic 3D lattice structure via selective electron beam melting”, Smart Mater. Struct. 26 (2): 025013.
  • Epasto, G., Palomba, G., D'Andrea, D., Guglielmino, E., Di Bella, S., Traina, F. 2019. “Ti-6Al-4V ELI microlattice structures manufactured by electron beam melting: Effect of unit cell dimensions and morphology on mechanical behaviour”, Materials Science & Engineering A, 753: 31-41.
  • Gümrük, R., Mines, R. A. W. 2013. “Compressive behaviour of stainless steel micro-lattice structures”, International Journal of Mechanical Sciences, 68: 125-139.
  • Vrana, R., Koutny, D., Palousek, D. 2016. “Impact resistance of different types of lattice structures manufactured by slm”, Modern Machinery (MM) Science Journal, December: 1579-1585.
  • Wang, L., Kang, J., Sun, C., Li, D., Cao, Y., Jin, Z. 2017. “Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants”, Materials & Design, 133: 62-68.
  • Amani, Y., Dancette, S., Delroisse, P., Simar, A.,Maire, E. 2018. “Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element approaches”, Acta Materialia, 159: 395-407.
  • Dong, Z., Zhang, X., Shi, W., Zhou, H., Lei, H., Liang, J. 2018. “Study of size effect on microstructure and mechanical properties of AlSi10Mg samples made by selective laser melting”, Materials, 11 (12): 2463.
  • Yu, T., Hyer, H., Sohn, Y., Bai, Y., Wu, D. 2019. “Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting”, Materials and Design, 182: 108062.
  • Großmann, A., Gosmann, J., Mittelstedt, C. 2019. “Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties”, Materials Science and Engineering: A, 766: 138356.
  • Gangireddy, S., Komarasamy, M., Faierson, E. J., Mishra, R. S. 2019. High strain rate mechanical behavior of Ti-6Al-4V octet lattice structures additively manufactured by selective laser melting (SLM)”, Materials Science & Engineering A, 745: 231.239.
  • Smith, M., Cantwell, W. J., Guan, Z., Tsopanos, S., Theobald, M. D., Nurick, G. N., Langdon, G. S. 2011. “The quasi-static response of steel lattice structures”, Journal of Sandwich Structures & Materials, 13 (4): 479-501.
  • Contuzzi, N., Campanelli, S. L., Casavola, C., Lamberti, L. 2013. “Manufacturing and characterization of 18Ni Marage 300 lattice components by selective laser melting”, Materials, 6 (8): 3451-3468.
  • Liu, W., Song, H., Wang, Z., Wang, J., Huang, C. 2019. “Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method”, Materials and Design, 181: 108065.
  • Wally, Z. J., Haque, A. M., Feteira, A., Claeyssens, F.,Goodall, R., Reilly, G. C. 2019. “Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications”, Journal of the Mechanical Behavior of Biomedical Materials, 90: 20-29.
  • Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A. 2017. “Compressive failure modes and energy absorption in additively manufactured double gyroid lattices”, Additive Manufacturing, 16: 24-29.
  • Flores, I., Kretzschmar, N., Azman, A. H., Chekurov, S., Pedersen, D. B., Chaudhuri, A. 2020. “Implications of lattice structures on economics and productivity of metal powder bed fusion”, Additive Manufacturing, 31: 100947.
  • Hao, L., Raymont, D., Yan, C., Hussein, A., Young, P. 2011. “Design and additive manufacturing of cellular lattice structures”, The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP), At Leiria, Portugal.
  • Horn, T. J., Harrysson, O. L. A., Marcellin-Little, D. J., West, H. A., Lascelles, B. D. X., Aman, R. 2014. “Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting”, Additive Manufacturing, 1-4: 2-11.
  • Heinl, P., Körner, C., Singer, R. F. 2008. “Selective electron beam melting of cellular titanium: mechanical properties”, Advanced Engineering Materials, 10 (9): 882-888.
  • Labeas, G. N., Sunaric, M. M. 2010. “Investigation on the static response and failure process of metallic open lattice cellular structures”, Strain, 46 (2): 195-204.
  • Yan, C.Z., Hao, L., Hussein, A., Raymont, D. 2012. “Evaluations of cellular lattice structures manufactured using selective laser melting”, International Journal of Machine Tools and Manufacture, 62: 32-38.
  • Hussein, A., Hao, L., Yan, C., Everson, R., Young, P. 2013. “Advanced lattice support structures for metal additive manufacturing”, Journal of Materials Processing Technology, 213: 1019-1026.
  • Ahmadi, S. M., Campoli, G., Yavari, S. A., Sajadi, B., Wauthle, R., Schrooten, J., Weinans, H., Zadpoor, A. A. 2014. “Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells”, Journal of the Mechanical Behavior of Biomedical Materials, 34: 106-115.
  • Yan, C., Hao, L., Hussein, A., Bubb, S. L., Young, P., Raymont, D. 2014. “Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering”, Journal of Materials Processing Technology, 214: 856-864.
  • Yan, C., Hao, L., Hussein, A., Young, P., Huang, J., Zhu, W. 2015. “Microstructure and mechanical properties of aluminum alloy cellular lattice structures manufactured by direct metal laser sintering”, Materials Science & Engineering A, 628: 238-246.
  • Yang, L. 2015 “Experimental-assisted design development for an octahedral cellular structure using additive manufacturing”, Rapid Prototyping Journal, 21 (2): 168-176.
  • Xiao, L. J., Song, W. D., Wang, C., Liu, H. Y., Tang, H. P., Wang, J. Z. 2015. “Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure”, Materials Science and Engineering A, 640: 375-384.
  • Du Plessis, A., Kouprianoff, D. P., Yadroitsava, I., Yadroitsev, I. 2018. “Mechanical properties and in situ deformation imaging of microlattices manufactured by laser based powder bed fusion”, Materials, 11 (9): 1663.
  • Ataee, A., Li, Y., Brandt, M., Wen, C. 2018. “Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications”, Acta Materialia, 158: 354-368.
  • Ataee, A., Li, Y., Fraser, D., Song, G., Wen, C. 2018. “Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications”, Materials & Design, 137: 345-354.
  • Ma, Z., Zhang, D.Z., Liu, F., Jiang, J., Zhao, M., Zhang, T. 2018. “Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption”, Materials & Design, 187: 108406.
  • Osman, M. M., Shazly, M., El-Danaf, E. A., Jamshidi, P., Attallah, M. M. 2020. “Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications”, Composites Part B: Engineering,184: 107715.
  • Peng, C.,Tran, P., Nguyen-Xuan, H., Ferreira, A. J. M. 2020. “Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach”, Composite Structures, 235: 111821.
  • Yuan, L., Ding, S., Wen, C. 2019. “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review”, Bioactive Materials, 4: 56-70.
  • Xu, Y., Zhang, D., Zhou, Y., Wang, W., Cao, X. 2017. “Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM)”, Materials, 10 (9): 1048.
  • Xu, G., Kou, H., Liu, X., Li, F., Li, J., Zhou, L. 2017. “Microstructure and mechanical properties of porous titanium based on controlling Young's modulus”, Rare Metal Materials and Engineering, 46(8): 2041-2048.
  • Wei, K., Yang, Q., Ling, B., Xie, H., Qu, Z., Fang, D. 2018. “Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting”, Extreme Mechanics Letters, 23: 41-48.
  • Yan, X., Li, Q., Yin, S., Chen, Z., Jenkins, R., Chen, C., Wang, J., Ma, W., Bolot, R., Lupoi, R., Ren, Z., Liao, H., Liu, M. 2019. “Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting”, Journal of Alloys and Compounds, 782: 209-223.
  • Xu, Y., Zhang, D., Hu, S., Chen, R., Gu, Y., Kong, X., Tao, J., Jiang, Y. 2019. “Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure”, Journal of the Mechanical Behavior of Biomedical Materials, 99: 225-239.
  • Wei, K., Yang, Q., Yang, X., Tao, Y., Xie, H., Qu, Z., Fang, D. 2020. “Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting”, Thin Walled Structures, 146: 106189.
  • Zhang, X.-Y., Fang, G., Leeflang, S., Zadpoor, A. A., Zhou, J. 2018. “Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials”, Acta Biomaterialia, 84: 437-452.
  • Wu, Y. C., Kuo, C. N., Shie, M. Y., Su, Y. L., Wei, L. J., Chen, S. Y., Huang, J. C. 2018. “Structural design and mechanical response of gradient porous Ti-6Al-4V fabricated by electron beam additive manufacturing”, Materials and Design, 158: 256-265.
  • Ravari, M. K., Esfahani, S. N., Andani, M. T., Kadkhodaei, M., Ghaei, A., Karaca, H., Elahinia, M. 2016. “On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures”, Smart Materials and Structures, 25 (2): 025008.
  • Vrána, R., Červinek, O., Maňas, P., Koutný, D., Paloušek, D. 2018. “Dynamic loading of lattice structure made by selective laser melting-numerical model with substitution of geometrical imperfections”, Materials, 11(11): 2129.
  • Liu, F., Zhang, D. Z., Zhang, P., Zhao, M., Jafar, S. 2018. “Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting”, Materials, 11 (3): 374.
  • Cao, X., Duan, S., Liang, J., Wen, W., Fang, D. 2018. “Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section”, International Journal of Mechanical Sciences,145: 53-63.
  • Bai, L., Yi, C., Chen, X., Sun, Y., Zhang, J. 2019. “Effective design of the graded strut of BCC lattice structure for improving mechanical properties”, Materials, 12 (13): 2192.
  • Maskery, I., Aremu, A.O., Parry, L., Wildman, R.D., Tuck, C.J., Ashcroft, I.A. 2018. “Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading”, Materials and Design, 155: 220-232.
  • Yang, L., Yan, C., Fan, H., Li, Z., Cai, C., Chen, P., Shi, Y., Yang, S. 2019. “Investigation on the orientation dependence of elastic response in Gyroid cellular structures”, Journal of the Mechanical Behavior of Biomedical Materials, 90: 73-85.
  • Gümrük, R., Mines, R., Karadeniz, S. 2013. “Static mechanical behaviours of stainless-steel micro-lattice structures under different loading conditions”, Materials Science and Engineering A, 586: 392-406.
  • Yang, L., Mertens, R., Ferrucci, M., Yan, C., Shi, Y., Yang, Y. 2019. “Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties”, Materials & Design, 162: 394-404.
  • Nazir, A., Abate, K. M., Kumar, A., Jeng, J-Y. 2019. “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures”, The International Journal of Advanced Manufacturing Technology, 104 (9-12): 3489-3510.
  • Shen, Y., Cantwell, W. J., Mines, R. A. W., Ushijima, K. 2012. “The properties of lattice structures manufactured using selective laser melting”, Advanced Materials Research, 445: 386-391.
  • Smith, M., Guan, Z., Cantwell, W. 2013. “Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique”, International Journal of Mechanical Sciences, 67: 28-41.
  • Hussein, A. Y. 2013. “The development of lightweight cellular structures for metal additive manufacturing”, PhD Thesis, University of Exeter, UK.
  • Weißmann, V., Bader, R., Hansmann, H., Laufer, N. 2016. “Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open porous scaffolds”, Materials and Design, 95: 188-197.
  • Yánez, A., Herrera, A., Martel, O., Monopoli, D., Afonso, H. 2016. “Compressive behavior of gyroid lattice structures for human cancellous bone implant applications”, Materials Science and Engineering C, 68: 445-448.
  • Cansizoglu, O., Harrysson, O., Cormier, D., West, H., Mahale, T. 2008. “Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting”, Materials Science and Engineering: A, 492(1-2):468–474.
  • Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D. 2012. “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior”, Materials and Design, 34: 159-169.
  • Alsalla, H., Hao, L., Smith, C. 2016. “Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique”, Material Science and Engineering A, 669: 1-6.
  • Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H., Laufer, N. 2017. “Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation”, Metals, 7(3): 91.
  • Dong, Z., Liu, Y., Li, W., Liang, J. 2019. “Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices”, Journal of Alloys and Compounds, 791: 490-500.
  • Tallon, J., Cyr, E., Lloyd, E., Mohammadi, M. 2020. “Crush performance of additively manufactured maraging steel microlattice reinforced plates”, Engineering Failure Analysis, 108: 104231.
  • Gu, H., Li, S., Pavier, M., Attallah, M. M., Paraskevoulakos, C., Shterenlikht, A. 2019. “Fracture of three-dimensional lattices manufactured by selective laser melting”, International Journal of Solids and Structures, 180-181: 147-159.
  • Delroisse, P., Jacques, P. J., Maire, E., Rigo, O., Simar, A. 2017. “Effect of strut orientation on the microstructure heterogeneities in AlSi10Mg lattices processed by selective laser melting”, Scripta Materialia, 141: 32-35.
  • Sing, S. L., Wiria, F. E., Yeong, W. Y. 2018. “Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior”, Robotics and Computer–Integrated Manufacturing 49: 170-180.
  • Yadroitsev, I., Thivillon, L., Bertrand, Ph., Smurov, I. 2007. “Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder”, Applied Surface Science, 254 (4): 980-983.
  • Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., Huang, W. 2010. “Development of highly porous titanium scaffolds by selective laser melting”, Material Letters, 64: 674-676.
  • Tsopanos, S., Mines, R. A. W., McKown, S., Shen, Y., Cantwell, W. J., Brooks, W., Sutcliffe, C. J. 2010. “The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures”, Journal of Manufacturing Science and Engineering, 132 (4): 041011.
  • Zhang, S., Wei, Q., Cheng, L., Li, S., Shi, Y. S. 2014. “Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials and Design, 63: 185-193.
  • Campanelli, S. L., Contuzzi, N., Ludovico, A. D., Caiazzo, F., Cardaropoli, F., Sergi, V. 2014. “Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting”, Materials, 7 (6): 4803–4822.
  • List, F. A., Dehoff, R. R., Lowe, L. E., Sames, W. J. 2014. “Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing”, Materials Science and Engineering: A, 615:191-197.
  • Qiu, C., Yue, S., Adkins, N. J. E., Ward, M., Hassanin, H., Lee, P. D., Withers, P. J., Attallah, M. M. 2015. “Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting”, Materials Science & Engineering A, 628: 188-197.
  • Sing, S. L., Yeong, W. Y., Wiria, F. E., Tay, B. Y. 2016. “Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method”, Experimental Mechanics, 56 (5): 735-748.
  • Vrána, R., Koutný, D., Paloušek, D., Pantělejev, L., Jaroš, J., Zikmund, T., Kaiser, J. 2018. “Selective laser melting srategy for fabrication of thin struts usable in lattice structures”, Materials, 11 (9): 1763.
  • Li, C., Lei, H., Liu, Y., Zhang, X., Xiong, J., Zhou, H., Fang, D. 2018. “Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting”, International Journal of Mechanical Sciences, 145: 389-399.
  • Onal, E., Medvedev, A. E., Leeflang, M. A., Molotnikov, A., Zadpoor, A.A. 2019. “Novel microstructural features of selective laser melted lattice struts fabricated with single point exposure scanning”, Additive Manufacturing, 29: 100785.
  • Velasco-Castro, M., Hernandez-Nava, E., Figueroa, I.A., Todd, I., Goodall, R. 2019. “The effect of oxygen pickup during selective laser melting on the microstructure and mechanical properties of Ti–6Al–4V lattices”, Heliyon, 5: e02813.
  • Tan, Z., Zhang, X., Zhou, Z., Zhou, Z., Yang, Y., Guo, X., Wang, Z., Wu, X., Wang, G., He, D. 2019. “Thermal effect on the microstructure of the lattice structure Cu-10Sn alloy fabricated through selective laser melting”, Journal of Alloys and Compounds, 787: 903-908.
  • Salem, H., Carter, L.N., Attallah, M.M., Salem, H.G. 2019. “Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Science & Engineering A, 767: 138387.
  • Yan, C., Hao, L., Hussein, A., Young, P. 2015. “Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting”, Journal of the Mechanical Behavior of Biomedical Materials, 51: 61-73.
  • Yan, C., Hao, L., Hussein, A., Wei, Q., Shi, Y. 2017. “Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting”, Materials Science and Engineering: C, 75: 1515-1524.
  • Zhang, M., Yang, Y., Wang, D., Xiao, Z., Song, C., Weng, C. 2018. “Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting”, Materials Science and Engineering A, 736: 288- 297.
  • Yan, X., Lupoi, R., Wu, H., Ma, W., Liu, M., O’Donnell, G., Yin, S. 2019. “Effect of hot isostatic pressing (HIP) treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Letters, 255: 126537.
  • Dallago, M., Fontanari, V., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M. 2017. “Fatigue properties of Ti6Al4V cellular specimens fabricated via SLM: CAD vs real geometry”, Structural Integrity Procedia, 7: 116-123.
  • Brenne, F., Niendorf, T., Maier, H. J. 2013. “Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load”, Journal of Materials Processing Technology, 213 (9): 1558-1564.
  • Dong, G., Tang, Y., Zhao, Y. F. 2017. “A survey of modeling of lattice structures fabricated by additive manufacturing”, Journal of Mechanical Design, 139(10): 100906.
  • Helou, M., Kara, S. 2018. “Design, analysis and manufacturing of lattice structures: an overview”, International Journal of Computer Integrated Manufacturing, 31 (3): 243-261.
There are 98 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Derleme Makaleleri
Authors

Orhan Gülcan 0000-0002-6688-2662

Project Number 5158001
Publication Date October 25, 2021
Submission Date November 19, 2020
Published in Issue Year 2021 Volume: 19 Issue: 2

Cite

Vancouver Gülcan O. Eklemeli İmalatla Üretilen Kafes Yapıların Mekanik Özellikleri Üzerine Etki Eden Faktörler. MATİM. 2021;19(2):64-81.