Research Article
BibTex RIS Cite

Lazer Toz Yataği Füzyon Prosesi Sırasında, Tpms Kafes Yapılarında Oluşan Büzülme Çizgilerinin Sayısal İncelenmesi

Year 2024, Volume: 22 Issue: 1, 8 - 16, 30.05.2024
https://doi.org/10.56193/matim.1370140

Abstract

Lazer toz yatağı füzyon işleminin (LTYF) termal doğası, üretim sırasında parça üzerinde artık gerilim oluşumuna neden olur ve bu da bazı katmanların büzülme çizgisi adı verilen nominal geometrinin içine veya dışına nüfuz etmesine neden olabilir. Büzülme çizgisi, üretilen parçaların boyutsal doğruluğunu ve yorulma ömrünü etkiler. Büzülme çizgisi oluşumunun sayısal yöntemlerle tahmin edilmesi, deneme yanılma üretiminin yüksek maliyetini azaltmak için önemlidir. Bu çalışma, LTYF yöntemi ile üretilen üçlü periyodik minimum yüzey (TPMS) kafeslerinde büzülme çizgisi oluşumunun tahmin edilmesine odaklanmıştır. TPMS tipinin, hacim oranının, birim hücre boyutunun, kafesin üretim platformuna göre eğim açısının, fonksiyonel derecelendirmenin ve malzemenin büzülme çizgisi oluşumuna etkisi araştırılmıştır. Sayısal sonuçlar, büzülme çizgilerinin yalnızca Primitif kafeslerde oluştuğunu ve bu çalışmada kullanılan kontrol parametrelerinin, ardışık katmanlar arasındaki, ısı kaynaklı gerilim oluşumu nedeniyle büzülme çizgisi penetrasyon derinliğini doğrudan etkilediğini ortaya çıkardı.

References

  • 1. Pan, C., Han, Y. and Lu, J., Design and optimization of lattice structures: A review, Appl. Sci., 10 (2020) 6374. https://doi.org/10.3390/app10186374.
  • 2. Yuan, Li, Ding, S. and Wen, C., Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioact. Mater., 4 (2019) 56-70. https://doi.org/10.1016/j.bioactmat.2018.12.003.
  • 3. Sokollu, B., Gulcan, O. and Konukseven, E. I., Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting, Addit. Manuf., 60 (2022) A, 103199. https://doi.org/10.1016/j.addma.2022.103199.
  • 4. Sefene, E. M., State-of-the-art of selective laser melting process: A comprehensive review, J. Manuf. Syst., 63 (2022) 250-274. https://doi.org/10.1016/j.jmsy.2022.04.002.
  • 5. Gong, G., Ye, J., Chi, Y., Zhao, Z., Wang, Z., Xia, G., Du, X., Tian, H., Yu, H. and Chen, C., Research status of laser additive manufacturing for metal: a review, J. Mater. Res. Technol., 15 (2021) 855-884. https://doi.org/10.1016/j.jmrt.2021.08.050.
  • 6. Adam, G. A. O. and Zimmer, D., Design for Additive Manufacturing—Element transitions and aggregated structures, CIRP J. Manuf. Sci. Technol., 7 (2014) 1, 20-28. https://doi.org/10.1016/j.cirpj.2013.10.001.
  • 7. Goetz, D., Wolf, D., Lehmann, M. and Zaeh. M. F., A novel approach for the quantitative characterization of shrink lines in the Powder Bed Fusion of metals using a laser beam, Procedia CIRP, 111 (2022) 832-837. https://doi.org/10.1016/j.procir.2022.08.093.
  • 8. Richardsen, S., Crawford and G., Gockel, J., Effect of a build pause on the fatigue behavior of laser powder bed fusion 316L stainless steel with as-build surfaces, Eng. Fail. Anal., 153 (2023) 107590. https://doi.org/10.1016/j.engfailanal.2023.107590.
  • 9. Sanchez, S., Smith, P., Xu, Z., Gaspard, G., Hyde, C. J., Wits, W. W., Ashcroft, I. A., Chen, H. and Clare, A. T, Powder Bed Fusion of nickel-based superalloys: A review, Int. J. Mach. Tools Manuf. 165 (2021) 103729. https://doi.org/10.1016/j.ijmachtools.2021.103729.
  • 10. Dowling, L., Kennedy, J., O'Shaughnessy, S. and Trimble, D, A review of critical repeatability and reproducibility issues in powder bed fusion, Materi Des. 186 (2020) 108346. https://doi.org/10.1016/j.matdes.2019.108346.
  • 11. Avrampos, P. and Vosniakos, G. -C., A review of powder deposition in additive manufacturing by powder bed fusion, J. Manuf. Proces. 74 (2022) 332-352. https://doi.org/10.1016/j.jmapro.2021.12.021.
  • 12. Levkulich, N. C., Semiatin, S. L., Gockel, J. E., Middendorf, J. R., DeWald, A. T. and Klingbeil, N. W., The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V, Addit. Manuf. 28 (2019) 475-484. https://doi.org/10.1016/j.addma.2019.05.015.
  • 13. Mukherjee, T., Zhang, W. and DebRoy, T., An improved prediction of residual stresses and distortion in additive manufacturing, Comput. Mater. Sci. 126 (2017) 360-372. https://doi.org/10.1016/j.commatsci.2016.10.003
  • 14. Buchbinder, D., Meiners, W., Pirch, N. and Wissnebach, K., Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting, J. Laser Appl. 26 (2014) 012004. https://doi.org/10.2351/1.4828755.
  • 15. Zheng, N., Zhai, X. and Chen, F., Topology optimization of self-supporting porous structures based on triply periodic minimal surfaces, Comput. Aided Des., 161 (2023) 103542. https://doi.org/10.1016/j.cad.2023.103542.
  • 16. Almomani, A. and Mourad, A. I., The fracture toughness of Schwarz Primitive triply periodic minimal surface lattice, Theor. App. Fract. Mech., 125 (2023) 103924. https://doi.org/10.1016/j.tafmec.2023.103924.
  • 17. Denlinger, E. R., Gouge, M., Irwin, J. and Michaleris, P., Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process, Addit. Manuf., 16 (2017) 73-80. https://doi.org/10.1016/j.addma.2017.05.001.
  • 18. Yan, C., Hao, L., Hussein, A., Bubb, S. L., Young, P. and Raymont, D., Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process. Technol., 214 (2014) 856-864. https://doi.org/10.1016/j.jmatprotec.2013.12.004.
  • 19. Yan, C., Hao, L., Hussein, A., Young, P., Huang, J. and Zhu, W., Microstructure and mechanical properties of aluminum alloy cellular lattice structures manufactured by direct metal laser sintering, Mater. Sci. Eng. A, 628 (2015) 238-246. https://doi.org/10.1016/j.msea.2015.01.063.
  • 20. Mishra, A. K., Chavan, H. and Kumar, A., Effect of cell size and wall thickness on the compression performance of triply periodic minimal surface based AlSi10Mg lattice structures, Thin-Walled Struct., 193 (2023) 111214. https://doi.org/10.1016/j.tws.2023.111214.
  • 21. Yang, L., Mertens, R., Ferrucci, M., Yan, C., Shi, Y. and Yang, Y., Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties, Mater. Des., 162 (2019) 394-404. https://doi.org/10.1016/j.matdes.2018.12.007.
  • 22. Qiu, N., Zhang, J., Li, C., Shen, Y. and Fang, J., Mechanical properties of three-dimensional functionally graded triply periodic minimum surface structures, Int. J. Mech. Sci., 246 (2023) 108118. https://doi.org/10.1016/j.ijmecsci.2023.108118.
  • 23. Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H. and Laufer, N., Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation, Metals, 7 (2017) 3, 91. https://doi.org/10.3390/met7030091.
  • 24. Sing, S. L., Wiria, F. E. and Yeong, W. Y., Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior, Robot. Comput. Integr. Manuf., 49 (2018) 170-180. https://doi.org/10.1016/j.rcim.2017.06.006.

A Numerical Investigation About Shrink Line Formation in TPMS Lattice Structures During LPBF Process

Year 2024, Volume: 22 Issue: 1, 8 - 16, 30.05.2024
https://doi.org/10.56193/matim.1370140

Abstract

Thermal nature of laser powder bed fusion process (LPBF) causes residual stress formation on the part during printing which may cause penetration of some layers towards inside or outside of the nominal geometry called shrink line. Shrink line affects dimensional accuracy and fatigue life of produced parts. The prediction of shrink line formation via numerical methods is important to mitigate the high cost of trial-and-error printing. This study focused on shrink line formation prediction in triply periodic minimum surface (TPMS) lattices produced by LPBF process. The effect of TPMS type, volume fraction, unit cell size, inclination angle of the lattice with respect to build platform, functional grading and material on shrink line formation were investigated. Numerical results revealed that shrink lines were formed only on Primitive lattices and input or control parameters used in this study directly influence the shrink line penetration depth due to different thermally induced stress formation between successive layers.

References

  • 1. Pan, C., Han, Y. and Lu, J., Design and optimization of lattice structures: A review, Appl. Sci., 10 (2020) 6374. https://doi.org/10.3390/app10186374.
  • 2. Yuan, Li, Ding, S. and Wen, C., Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioact. Mater., 4 (2019) 56-70. https://doi.org/10.1016/j.bioactmat.2018.12.003.
  • 3. Sokollu, B., Gulcan, O. and Konukseven, E. I., Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting, Addit. Manuf., 60 (2022) A, 103199. https://doi.org/10.1016/j.addma.2022.103199.
  • 4. Sefene, E. M., State-of-the-art of selective laser melting process: A comprehensive review, J. Manuf. Syst., 63 (2022) 250-274. https://doi.org/10.1016/j.jmsy.2022.04.002.
  • 5. Gong, G., Ye, J., Chi, Y., Zhao, Z., Wang, Z., Xia, G., Du, X., Tian, H., Yu, H. and Chen, C., Research status of laser additive manufacturing for metal: a review, J. Mater. Res. Technol., 15 (2021) 855-884. https://doi.org/10.1016/j.jmrt.2021.08.050.
  • 6. Adam, G. A. O. and Zimmer, D., Design for Additive Manufacturing—Element transitions and aggregated structures, CIRP J. Manuf. Sci. Technol., 7 (2014) 1, 20-28. https://doi.org/10.1016/j.cirpj.2013.10.001.
  • 7. Goetz, D., Wolf, D., Lehmann, M. and Zaeh. M. F., A novel approach for the quantitative characterization of shrink lines in the Powder Bed Fusion of metals using a laser beam, Procedia CIRP, 111 (2022) 832-837. https://doi.org/10.1016/j.procir.2022.08.093.
  • 8. Richardsen, S., Crawford and G., Gockel, J., Effect of a build pause on the fatigue behavior of laser powder bed fusion 316L stainless steel with as-build surfaces, Eng. Fail. Anal., 153 (2023) 107590. https://doi.org/10.1016/j.engfailanal.2023.107590.
  • 9. Sanchez, S., Smith, P., Xu, Z., Gaspard, G., Hyde, C. J., Wits, W. W., Ashcroft, I. A., Chen, H. and Clare, A. T, Powder Bed Fusion of nickel-based superalloys: A review, Int. J. Mach. Tools Manuf. 165 (2021) 103729. https://doi.org/10.1016/j.ijmachtools.2021.103729.
  • 10. Dowling, L., Kennedy, J., O'Shaughnessy, S. and Trimble, D, A review of critical repeatability and reproducibility issues in powder bed fusion, Materi Des. 186 (2020) 108346. https://doi.org/10.1016/j.matdes.2019.108346.
  • 11. Avrampos, P. and Vosniakos, G. -C., A review of powder deposition in additive manufacturing by powder bed fusion, J. Manuf. Proces. 74 (2022) 332-352. https://doi.org/10.1016/j.jmapro.2021.12.021.
  • 12. Levkulich, N. C., Semiatin, S. L., Gockel, J. E., Middendorf, J. R., DeWald, A. T. and Klingbeil, N. W., The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V, Addit. Manuf. 28 (2019) 475-484. https://doi.org/10.1016/j.addma.2019.05.015.
  • 13. Mukherjee, T., Zhang, W. and DebRoy, T., An improved prediction of residual stresses and distortion in additive manufacturing, Comput. Mater. Sci. 126 (2017) 360-372. https://doi.org/10.1016/j.commatsci.2016.10.003
  • 14. Buchbinder, D., Meiners, W., Pirch, N. and Wissnebach, K., Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting, J. Laser Appl. 26 (2014) 012004. https://doi.org/10.2351/1.4828755.
  • 15. Zheng, N., Zhai, X. and Chen, F., Topology optimization of self-supporting porous structures based on triply periodic minimal surfaces, Comput. Aided Des., 161 (2023) 103542. https://doi.org/10.1016/j.cad.2023.103542.
  • 16. Almomani, A. and Mourad, A. I., The fracture toughness of Schwarz Primitive triply periodic minimal surface lattice, Theor. App. Fract. Mech., 125 (2023) 103924. https://doi.org/10.1016/j.tafmec.2023.103924.
  • 17. Denlinger, E. R., Gouge, M., Irwin, J. and Michaleris, P., Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process, Addit. Manuf., 16 (2017) 73-80. https://doi.org/10.1016/j.addma.2017.05.001.
  • 18. Yan, C., Hao, L., Hussein, A., Bubb, S. L., Young, P. and Raymont, D., Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process. Technol., 214 (2014) 856-864. https://doi.org/10.1016/j.jmatprotec.2013.12.004.
  • 19. Yan, C., Hao, L., Hussein, A., Young, P., Huang, J. and Zhu, W., Microstructure and mechanical properties of aluminum alloy cellular lattice structures manufactured by direct metal laser sintering, Mater. Sci. Eng. A, 628 (2015) 238-246. https://doi.org/10.1016/j.msea.2015.01.063.
  • 20. Mishra, A. K., Chavan, H. and Kumar, A., Effect of cell size and wall thickness on the compression performance of triply periodic minimal surface based AlSi10Mg lattice structures, Thin-Walled Struct., 193 (2023) 111214. https://doi.org/10.1016/j.tws.2023.111214.
  • 21. Yang, L., Mertens, R., Ferrucci, M., Yan, C., Shi, Y. and Yang, Y., Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties, Mater. Des., 162 (2019) 394-404. https://doi.org/10.1016/j.matdes.2018.12.007.
  • 22. Qiu, N., Zhang, J., Li, C., Shen, Y. and Fang, J., Mechanical properties of three-dimensional functionally graded triply periodic minimum surface structures, Int. J. Mech. Sci., 246 (2023) 108118. https://doi.org/10.1016/j.ijmecsci.2023.108118.
  • 23. Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H. and Laufer, N., Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation, Metals, 7 (2017) 3, 91. https://doi.org/10.3390/met7030091.
  • 24. Sing, S. L., Wiria, F. E. and Yeong, W. Y., Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior, Robot. Comput. Integr. Manuf., 49 (2018) 170-180. https://doi.org/10.1016/j.rcim.2017.06.006.
There are 24 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering, Mechanical Engineering (Other)
Journal Section Araştırma, Geliştirme ve Uygulama Makaleleri
Authors

Orhan Gülcan 0000-0002-6688-2662

Kadir Günaydın 0000-0002-3045-130X

Ugur Simsek 0000-0002-4405-5420

Publication Date May 30, 2024
Submission Date October 2, 2023
Published in Issue Year 2024 Volume: 22 Issue: 1

Cite

Vancouver Gülcan O, Günaydın K, Simsek U. A Numerical Investigation About Shrink Line Formation in TPMS Lattice Structures During LPBF Process. MATİM. 2024;22(1):8-16.