Yıl 2025,
Sayı: UTIS 2024, 59 - 65, 03.10.2025
Emre Taşcıoğlu
,
Yusuf Kaynak
,
Özhan Kıtay
Kaynakça
-
1. Nobel, C., et al., Experimental investigation of chip formation, flow, and breakage in free orthogonal cutting of copper-zinc alloys. The International Journal of Advanced Manufacturing Technology, 2016. 84: p. 1127-1140.
-
2. Vilarinho, C., et al., Influence of the chemical composition on the machinability of brasses. Journal of materials processing Technology, 2005. 170(1-2): p. 441-447.
-
3. Nobel, C., et al., Machinability enhancement of lead-free brass alloys. Procedia Cirp, 2014. 14: p. 95-100.
-
4. Hofmann, U., et al., Messing und Stahl auf dem Prüfstand: Ein Vergleich der Zerspanbarkeit. Werkstatt und Betrieb, 2005. 7: p. 93-97.
-
5. IMAI, H., et al., Mechanical properties and machinability of extruded Cu-40% Zn brass alloys with bismuth via powder metallurgy process. Transactions of JWRI, 2009. 38(1): p. 25-30.
-
6. Saigal, A. and P. Rohatgi, Machinability of cast lead-free yellow brass containing graphite particles. Transactions of the American Foundrymen's Society, 1996. 104: p. 225-228.
-
7. Gane, N., The effect of lead on the friction and machining of brass. Philosophical Magazine A, 1981. 43(3): p. 545-566.
-
8. Nobel, C., et al., Experimental investigation of chip formation, flow, and breakage in free orthogonal cutting of copper-zinc alloys. The International Journal of Advanced Manufacturing Technology, 2016. 84(5-8): p. 1127-1140.
-
9. Chen, X., et al., Study on the properties of Sn–9Zn–xCr lead-free solder. Journal of alloys and Compounds, 2008. 460(1-2): p. 478-484.
-
10. Atsumi, H., et al., High-strength, lead-free machinable α–β duplex phase brass Cu–40Zn–Cr–Fe–Sn–Bi alloys. Materials Science and Engineering: A, 2011. 529: p. 275-281.
-
11. Directive, E., Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). Official Journal of the European Communities, 2011.
-
12. Hofmann, U. and E. El-Magd, Behaviour of Cu-Zn alloys in high speed shear tests and in chip formation processes. Materials Science and Engineering: A, 2005. 395(1-2): p. 129-140.
-
13. Klocke, F., D. Lung, and C. Nobel, Ansätze zur Hochleistungszerspanung bleifreier Kupferwerkstoffe. Metall-Clausthal, 2012. 66(11): p. 496.
-
14. Taha, M.A., et al., Machinability characteristics of lead free-silicon brass alloys as correlated with microstructure and mechanical properties. Ain Shams Engineering Journal, 2012. 3(4): p. 383-392.
-
15. Kato, H., S. Nakata, and N. Ikenaga, Improvement of chip evacuation in drilling of lead-free brass using micro drill. International journal of automation technology, 2014. 8(6): p. 874-879.
-
16. Klocke, F., C. Nobel, and D. Veselovac, Influence of tool coating, tool material, and cutting speed on the machinability of low-leaded brass alloys in turning. Materials and Manufacturing Processes, 2016. 31(14): p. 1895-1903.
-
17. Toulfatzis, A.I., G.A. Pantazopoulos, and A.S. Paipetis, Fracture behavior and characterization of lead-free brass alloys for machining applications. Journal of materials engineering and performance, 2014. 23(9): p. 3193-3206.
Kesici Takım Geometrisinin CW511L Kurşunsuz Pirinç Malzemenin İşlenebilirliğine Etkisinin İncelenmesi
Yıl 2025,
Sayı: UTIS 2024, 59 - 65, 03.10.2025
Emre Taşcıoğlu
,
Yusuf Kaynak
,
Özhan Kıtay
Öz
Kurşunsuz pirinç malzemeler çok geniş bir uygulama alanına sahip olmasına rağmen talaşlı işlenebilirliğinde halen problemlerle karşılaşılabilinmektedir. Bu çalışmada kurşunsuz pirinç olan CW511L malzemenin talaşlı işlenebilirliği farklı kesme hızları, takım talaş açısı ve ilerleme değeri bakımından incelenmiştir. Elde edilen bulgular düşük kesme hızında ve ilerleme değerinde kesme kuvvetinin ve kesme sıcaklığının azaldığını göstermektedir. Ayrıca takım geometrisi işlenebilirliği doğrudan etkilemiştir. En yüksek mikrosertlik değeri negatif talaş açısıyla yapılan deneylerde elde edilmiştir. Ayrıca malzemenin deformasyon hızının 105 s-1 olduğu hesaplanmıştır. Deformasyon hızına takım geometrisinin etkisi sınırlı olurken kesme hızının etkisi belirgin farklılıklar sağlamıştır.
Kaynakça
-
1. Nobel, C., et al., Experimental investigation of chip formation, flow, and breakage in free orthogonal cutting of copper-zinc alloys. The International Journal of Advanced Manufacturing Technology, 2016. 84: p. 1127-1140.
-
2. Vilarinho, C., et al., Influence of the chemical composition on the machinability of brasses. Journal of materials processing Technology, 2005. 170(1-2): p. 441-447.
-
3. Nobel, C., et al., Machinability enhancement of lead-free brass alloys. Procedia Cirp, 2014. 14: p. 95-100.
-
4. Hofmann, U., et al., Messing und Stahl auf dem Prüfstand: Ein Vergleich der Zerspanbarkeit. Werkstatt und Betrieb, 2005. 7: p. 93-97.
-
5. IMAI, H., et al., Mechanical properties and machinability of extruded Cu-40% Zn brass alloys with bismuth via powder metallurgy process. Transactions of JWRI, 2009. 38(1): p. 25-30.
-
6. Saigal, A. and P. Rohatgi, Machinability of cast lead-free yellow brass containing graphite particles. Transactions of the American Foundrymen's Society, 1996. 104: p. 225-228.
-
7. Gane, N., The effect of lead on the friction and machining of brass. Philosophical Magazine A, 1981. 43(3): p. 545-566.
-
8. Nobel, C., et al., Experimental investigation of chip formation, flow, and breakage in free orthogonal cutting of copper-zinc alloys. The International Journal of Advanced Manufacturing Technology, 2016. 84(5-8): p. 1127-1140.
-
9. Chen, X., et al., Study on the properties of Sn–9Zn–xCr lead-free solder. Journal of alloys and Compounds, 2008. 460(1-2): p. 478-484.
-
10. Atsumi, H., et al., High-strength, lead-free machinable α–β duplex phase brass Cu–40Zn–Cr–Fe–Sn–Bi alloys. Materials Science and Engineering: A, 2011. 529: p. 275-281.
-
11. Directive, E., Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). Official Journal of the European Communities, 2011.
-
12. Hofmann, U. and E. El-Magd, Behaviour of Cu-Zn alloys in high speed shear tests and in chip formation processes. Materials Science and Engineering: A, 2005. 395(1-2): p. 129-140.
-
13. Klocke, F., D. Lung, and C. Nobel, Ansätze zur Hochleistungszerspanung bleifreier Kupferwerkstoffe. Metall-Clausthal, 2012. 66(11): p. 496.
-
14. Taha, M.A., et al., Machinability characteristics of lead free-silicon brass alloys as correlated with microstructure and mechanical properties. Ain Shams Engineering Journal, 2012. 3(4): p. 383-392.
-
15. Kato, H., S. Nakata, and N. Ikenaga, Improvement of chip evacuation in drilling of lead-free brass using micro drill. International journal of automation technology, 2014. 8(6): p. 874-879.
-
16. Klocke, F., C. Nobel, and D. Veselovac, Influence of tool coating, tool material, and cutting speed on the machinability of low-leaded brass alloys in turning. Materials and Manufacturing Processes, 2016. 31(14): p. 1895-1903.
-
17. Toulfatzis, A.I., G.A. Pantazopoulos, and A.S. Paipetis, Fracture behavior and characterization of lead-free brass alloys for machining applications. Journal of materials engineering and performance, 2014. 23(9): p. 3193-3206.