Research Article
BibTex RIS Cite

Konaklama yapılarında asma tavan kaplama malzemelerinin bulanık AHP ile seçimi

Year 2022, Volume: 3 Issue: 1, 22 - 36, 29.06.2022

Abstract

Günümüz mimarlığında, iç mekanlarda yaygın olarak kullanılan asma tavanlar, kullanıldıkları mekanlarda, en önemli bitiş yüzeylerinden biri olarak karşımıza çıkmaktadır. Mevcut bir tavanın altında; tavandan geçen tesisatları gizleyerek dekoratif bir görünüm kazandıran, akustik kontrol, yangın koruması, nem dayanımı, ısı yalıtımı gibi işlevsellikler sağlamak amacıyla uygulanan, çeşitli taşıyıcı sistem seçenekleri olan, aynı zamanda kaplama malzemesi işlevi üstlenen yapı elemanlarıdır. Asma tavan malzeme seçenek ve olanaklarının artmasına rağmen, doğru olarak kullanılması ve kullanıldığı mekandaki işleve uygun olarak seçimi konusunda yeterli bilgi bulunmamaktadır. Her geçen gün yeni bir malzemenin ortaya çıktığı asma tavan sistemlerinde doğru, yeterli, zamanında ve düzenli olarak bilgi edinilmesindeki zorluk, doğru malzeme seçiminin yapılmasında büyük bir engel oluşturmaktadır. Bu çalışmada otel odaları için en uygun asma tavan kaplaması seçimi bulanık AHP yöntemi kullanılarak belirlenmiştir. Elde edilen sonuçlar, özellikle birden fazla sayıda birbirine yakın malzeme seçeneğinin olduğu durumlarda, bulanık AHP yönteminin en doğru malzemenin seçilebilmesi için tasarımcının kullanabileceği bir yöntem olduğunu ortaya koymaktadır.

References

  • 1. Luigi F., Shakeel S., Raffaele L., Seismic behaviour of a bracing system for LWS suspended ceilings: Preliminary experimental evaluation through cyclic tests, Thin-Walled Structures, 155 106956, 2020.
  • 2. Toydemir N., Gürdal E., Tanaçan L., Yapı Elemanı Tasarımında Malzeme, Literatür Yayınları, İstanbul, Türkiye, 2000.
  • 3. TS EN 13964., Asma Tavanlar Gerekler ve Deney Yöntemleri. Türk Standartları Enstitüsü, Ankara, Türkiye, 2008.
  • 4. Dhakal R. P., Pourali A., Saha S. K., Simplified seismic loss functions for suspended ceilings and drywall partitions, Bulletin of the New Zealand Society for Earthquake Engineering, 49(1) 64-78, 2016.
  • 5. Brandolese S., Fiorin L., Scotta R., Seismic demand and capacity assessment of suspended ceiling systems, Engineering Structures, 193 219-237, 2019.
  • 6. Więckowski A., Ryż K., Sikora W., Failures of suspended ceilings and execution errors, Technical Transactions, 12 107–116, 2018.
  • 7. Chao L.-C., Skibniewski M. J., Fuzzy logic for evaluating alternative construction technology, Journal of Construction Engineering and Management, 124 4 297-304, 1998.
  • 8. Tah J. H. M., Carr V., A proposal for construction project risk assessment using fuzzy logic, Construction Management and Economics, 18 4 491-500, 2000.
  • 9. Zhang H., Tam C. M., Shi J.J., Application of fuzzy logic to simulation for construction operations, Journal of Computing in Civil Engineering, 17 1 38-45, 2003.
  • 10. Nasirzadeh F., Afshar A., Khanzadi M., Howick S., Integrating system dynamics and fuzzy logic modelling for construction risk management, Construction Management and Economics, 26 11 1197-1212, 2008.
  • 11. Poveda, C. A., Fayek A. R., Predicting and evaluating construction trades foremen performance: fuzzy logic approach, Journal of Construction Engineering and Management, 9 1 920-929, 2009.
  • 12. MarzoukM., Amin A., Predicting construction materials prices using fuzzy logic and neural networks, Journal of Construction Engineering and Management, 139 9 1190-1198, 2013.
  • 13. Anbarcı M., Öz B., İnşaat projeleri için şantiye şefinin seçiminde bir bulanık mantık değerlendirme modeli, Marmara Fen Bilimleri Dergisi, 4 30344 104-113, 2015.
  • 14. Gazjler M., Zima K., Evaluation of planned construction projects using fuzzy logic, International Journal of Civil Engineering, 15 4 641–652, 2017.
  • 15. Plebankiewicz E., Zima K., Wieczorek D., Modelling of time, cost and risk of construction with using fuzzy logic, Journal of Civil Engineering and Management, 27 6 412-426, 2021.
  • 16. Nguyen D.-T., Le-Hoai L., Tarigan P. B., Tran D.-H., Tradeoff time cost quality in repetitive construction project using fuzzy logic approach and symbiotic organism search algorithm, Alexandria Engineering Journal, 61 2 1499–1518, 2022.
  • 17. Gül M., Celik E., Gumus A. T., Guneri A. F., A fuzzy logic based PROMETHEE method for material selection problems, Beni-Suef University Journal of Basic and Applied Sciences, 7 1 168-79, 2018.
  • 18. Obradović R., Pamučar D., Multi-criteria model for the selection of construction materials: an approach based on fuzzy logic, Technical Gazette, 27 5 1531-1543, 2020.
  • 19. Ozmen-Akyol S., Baba A. F., Salman S., Selection of material for marine environments using fuzzy TOPSIS approach, Bilişim Teknolojileri Dergisi,14 1 11-22, 2021.
  • 20. N., Bulunuz N., Orbak A. Y., Mulu N., Tavşanlı Ö. F., An evaluation of primary school students’ views about noise levels in school, International Electronic Journal of Elementary Education, 9(4) 725-740, 2017.
  • 21. Ryua J., Hansol S., Yonghee K., Effect of the suspended ceiling with low-frequency resonant panel absorber on heavyweight floor impact sound in the building, Building and Environment, 139 1-7, 2018.
  • 22. Asakura T., Numerical investigation of the sound-insulation effect of a suspended ceiling structure with arrayed Helmholtz resonators by the finite-difference time-domain method, Applied Acoustics, 172 107601, 2021.
  • 23. Pracki P., Dziedzicki M., Komorzycka P., Ceiling, and wall illumination, utiliance, and power in interior lighting, Energies, 13 18 4744, 2020.
  • 24. Hung Anh, L. D., Pásztory, Z., An overview of factors influencing thermal conductivity of building insulation materials, Journal of Building Engineering, 44 102604, 2021.
  • 25. Celadyn M., Environmental activation of inner space components in sustainable interior design, Sustainability, 10 1945, 2018.
  • 26. Yıldırım N., Design of adhesive-free bio-based suspended ceiling tiles using nanocellulose, BioResources, 13 4 7360-7370, 2018.
  • 27. Ginestet S., Aschan-Leygonie C., Bayeux T., Keirsbulck M., Mould in indoor environments: The role of heating, ventilation, and fuel poverty. A French perspective, Building and Environment, 169 106577, 2020.
  • 28. Chou T., Tang C., Chuang Y., Lin, C., Study on Smoke Leakage Performance of Suspended Ceiling System, Sustainability, 12 18 7244, 2020.
  • 29. Gravit M.V. ve Golub E.V. Fireproof suspended ceilings with high fire resistance limits, Magazine of Civil Engineering, 84 8 75-85, 2018.
  • 30. Luo Z., Xue J., Zhou T., Qi L., Zhao X., Shaking table tests and seismic design suggestions for innovative suspended ceiling systems with detachable metal panels, Engineering Structures, 232 111830, 2021.
  • 31. Zhou T., Wang X., Liu W., Zhang Z., Ma B., Tan W., Shaking table tests on seismic response of discontinuous suspended ceilings, Journal of Building Engineering, 43 102916, 2021.
  • 32. Merino M. R., Saez P. V., Longobardi I., Astorqui J. S. C., Porras-Amares C., Redesigning lighweight gypsum with mixes of polystrene waste from consruction and demolition waste. Journal of Cleaner Production, 220 144-151, 2019.
  • 33. Zorlu K. ve Karadayı T. T., İç mekan hava kalitesinde yapı malzemelerinin rolü, Sinop Üniversitesi Fen Bilimleri Dergisi, 5 2 193-211, 2020.
  • 34. Kurtay C. ve Esen O., Ofis yapıları için ışık rafı tasarımında 30° ve 45° enlemlerinde optimum verim sağlanması için bir yöntem. Journal of the Faculty of Engineering and Architecture of Gazi University, 34 2 835-844, 2019.
  • 35. Krusaa M. R., Hviid C. A., Combining suspended radiant ceiling with diffuse ventilation – Numerical performance analysis of low-energy office space in a temperate climate, Journal of Building Engineering, 38 102161, 2021.
  • 36. Kokulu N. ve Özgünler S. A. Evaluation of the effects of building materials on human health and healthy material selection. Gazi University Journal of Science, 32 1 14-25, 2019.
  • 37. Allen E. ve Iano J., Fundamentals of Building Construction, Materials and Methods, John Wiley and Sons, New Jersey, U.S.A., 2019.
  • 38. Lyons A., Materials for Architects and Builders, Butterworth-Heinemann, Elsevier, Oxford, England, 2019.
  • 39. Kılıç O., Kafe iç mekan tasarımında ahşap kompozit malzemelerin kullanımının irdelenmesi, Elektronik Sosyal Bilimler Dergisi, 16 63 1270-1281, 2017.
  • 40. Berge B., The Ecology of Building Materials, Architectural Press, Oxford, England, 2009.
  • 41. Roaf, S., Fuentes, M., Thomas, S., Ecohouse2, a Design Guide, Architectural Press, Elsevier, Oxford, England, 2012.
  • 42. Calkins M., Materials for Sustainable Sites. A Complete Guide to the Evaluation, Selection, and Use of Sustainable Construction Materials, John Wiley and Sons, New Jersey, U.S.A., 2009.
  • 43. Guo Y., Zhou Y., Xu Y., Engineering polymers with metal-like thermal conductivity—Present status and future perspectives, Polymer, 233 (October), 124168, 2021.
  • 44. Bell V. B., Rand P., Materials for Architectural Design2, Laurence King Publishing, London, England, 2014.
  • 45. Hegger M., Drexler H., Zeumer M., Basics Materials, Birkhäuser, Boston, U.S.A., 2017.
  • 46. Fernandez J., Material Architecture, Emergent Materials for Innovative Buildings and Ecological Construction. Architectural Press, Elsevier, Oxford, England, 2008.
  • 47. Gür N. V., Yapı Kabuğu ve Yenilikçi Yaklaşımlar, Yapıda Yenilikçi Yaklaşımlar, Editör: Koman İ., MSGSÜ Yayınları. İstanbul, Türkiye, 158-185, 2015.
  • 48. Compagno A., Glass as a Building Material-Developments and Trends, Translucent Materials, Glass, Plastic, Metals, Editör: Kaltenbach F., Birkhauser, Munich, Germany, 10-13, 2004.
  • 49. Levent T., Upholstery fabrics as a design element in interior space and selection criterias, Mugla Journal of Science and Technology, 2 (2), 38-43, 2016.
  • 50. Avlanmaz Bilecen E., İç mekân tasarımı tekstil seçiminde performans ölçütlerinin değerlendirilmesi, Artium, 8 (1), 61-67, 2020.
  • 51. Missakian A., Nichols, K., Wong, L., From Raw Material to the Finished Product: Interior Textiles, Flexible Composite Materials in Architecture, Construction, and Interiors, Editör: Motro R., Birkhauser, Basel, Swiss, 86-99, 2013.
  • 52. Asadi E., Costa J. J., Gameiro da Silva M., Indoor air quality audit implementation in a hotel building in Portugal, Building and Environment, 46 (8), 1617-1623, 2011.
  • 53. Chen Y.-Y., Chuang Y.-J., Huang C.H., Lin C.-Y., Chien S.-W., The adoption of fire safety management for upgrading the fire safety level of existing hotel buildings, Building and Environment, 51 12.001 311-319, 2012.
  • 54. Cheung M., Fan J., Carbon reduction in a high-density city: A case study of Langham Place Hotel Mongkok Hong Kong, Renewable Energy, 50 06.060 433-440, 2013.
  • 55. Puig R., Kılıç E., Navarro A., Alberti J., Chacon L., Fullana-i-Palmer P., Inventory analysis and carbon footprint of coastland-hotel services: A Spanish case study, Science of the Total Environment, 595 03245 244-254, 2017.
  • 56. Baruti B., Malollari I., Lajci N., Sadiku M., Nikshiq-Kadriu S., Aliu M., Syla, B., Hoxha P., Assessment of noise pollution risk at hotels in Mitrovica – Kosovo, Journal of Environmental Protection and Ecology, 15 4 1519-1525, 2014.
  • 57. Buso T., Dell’Anna F., Bechio C., Bottero M. C., Of comfort and cost: Examining indoors comfort conditions and guests’ valuations in Italian hotel rooms, Energy, Research and Social Science, 32 01.006 94-111, 2017.
  • 58. Saaty T. L., The Analytic Hierarchy Process, Mc-Graww Hill, New York, U.S.A., 1980.
  • 59. Zadeh L. A., Fuzzy sets, Information and Control, 8 3, 338-353, 1965.
  • 60. Hendiani S., Bagherpour M., Developing an integrated index to assess social sustainability in construction industry using fuzzy logic, Journal of Cleaner Production, 230 05.055 647-662, 2019.
  • 61. Plebankiewicz E., Zima K., Wieczorek D., Modelling of time, cost, and risk of construction with using fuzzy logic, Journal of Civil Engineering and Management, 27 6 412–426, 2021.
  • 62. Dağdeviren M., Bulanık analitik hiyerarşi prosesi ile personel seçimi ve bir uygulama. Journal of the Faculty of Engineering and Architecture of Gazi University, 22 4 791-799, 2007.
  • 63. Nguyen D.-T., Le-Hoai L., Basenda Tarigan P., Tran D.-H., Tradeoff time cost quality in repetitive construction project using fuzzy logic approach and symbiotic organism search algorithm, Alexandria Engineering Journal, 61 2 1499-1518, 2022.
  • 64. Zimmermann H. J., Fuzzy set theory and its application, Kluwer Academic Publishers, Boston, U.S.A., 1990.
  • 65. Prakash, T. N., Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach (Yayınlanmamış yüksek lisans tezi), International Institute for Geo-Information Science and Earth Observation, ITC, Enschede, Holland, 2003.
  • 66. Chan F. T. S., Chan M. H., Tang, N. K. H., Evaluation methodologies for technology selection, Journal of Materials Processing Technology, 107 1-3 330-337, 2000.
  • 67. Opricovic S., ve Tseng G. H., Defuzzification within a multicriteria decision model, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 115 635-652, 2003.
Year 2022, Volume: 3 Issue: 1, 22 - 36, 29.06.2022

Abstract

References

  • 1. Luigi F., Shakeel S., Raffaele L., Seismic behaviour of a bracing system for LWS suspended ceilings: Preliminary experimental evaluation through cyclic tests, Thin-Walled Structures, 155 106956, 2020.
  • 2. Toydemir N., Gürdal E., Tanaçan L., Yapı Elemanı Tasarımında Malzeme, Literatür Yayınları, İstanbul, Türkiye, 2000.
  • 3. TS EN 13964., Asma Tavanlar Gerekler ve Deney Yöntemleri. Türk Standartları Enstitüsü, Ankara, Türkiye, 2008.
  • 4. Dhakal R. P., Pourali A., Saha S. K., Simplified seismic loss functions for suspended ceilings and drywall partitions, Bulletin of the New Zealand Society for Earthquake Engineering, 49(1) 64-78, 2016.
  • 5. Brandolese S., Fiorin L., Scotta R., Seismic demand and capacity assessment of suspended ceiling systems, Engineering Structures, 193 219-237, 2019.
  • 6. Więckowski A., Ryż K., Sikora W., Failures of suspended ceilings and execution errors, Technical Transactions, 12 107–116, 2018.
  • 7. Chao L.-C., Skibniewski M. J., Fuzzy logic for evaluating alternative construction technology, Journal of Construction Engineering and Management, 124 4 297-304, 1998.
  • 8. Tah J. H. M., Carr V., A proposal for construction project risk assessment using fuzzy logic, Construction Management and Economics, 18 4 491-500, 2000.
  • 9. Zhang H., Tam C. M., Shi J.J., Application of fuzzy logic to simulation for construction operations, Journal of Computing in Civil Engineering, 17 1 38-45, 2003.
  • 10. Nasirzadeh F., Afshar A., Khanzadi M., Howick S., Integrating system dynamics and fuzzy logic modelling for construction risk management, Construction Management and Economics, 26 11 1197-1212, 2008.
  • 11. Poveda, C. A., Fayek A. R., Predicting and evaluating construction trades foremen performance: fuzzy logic approach, Journal of Construction Engineering and Management, 9 1 920-929, 2009.
  • 12. MarzoukM., Amin A., Predicting construction materials prices using fuzzy logic and neural networks, Journal of Construction Engineering and Management, 139 9 1190-1198, 2013.
  • 13. Anbarcı M., Öz B., İnşaat projeleri için şantiye şefinin seçiminde bir bulanık mantık değerlendirme modeli, Marmara Fen Bilimleri Dergisi, 4 30344 104-113, 2015.
  • 14. Gazjler M., Zima K., Evaluation of planned construction projects using fuzzy logic, International Journal of Civil Engineering, 15 4 641–652, 2017.
  • 15. Plebankiewicz E., Zima K., Wieczorek D., Modelling of time, cost and risk of construction with using fuzzy logic, Journal of Civil Engineering and Management, 27 6 412-426, 2021.
  • 16. Nguyen D.-T., Le-Hoai L., Tarigan P. B., Tran D.-H., Tradeoff time cost quality in repetitive construction project using fuzzy logic approach and symbiotic organism search algorithm, Alexandria Engineering Journal, 61 2 1499–1518, 2022.
  • 17. Gül M., Celik E., Gumus A. T., Guneri A. F., A fuzzy logic based PROMETHEE method for material selection problems, Beni-Suef University Journal of Basic and Applied Sciences, 7 1 168-79, 2018.
  • 18. Obradović R., Pamučar D., Multi-criteria model for the selection of construction materials: an approach based on fuzzy logic, Technical Gazette, 27 5 1531-1543, 2020.
  • 19. Ozmen-Akyol S., Baba A. F., Salman S., Selection of material for marine environments using fuzzy TOPSIS approach, Bilişim Teknolojileri Dergisi,14 1 11-22, 2021.
  • 20. N., Bulunuz N., Orbak A. Y., Mulu N., Tavşanlı Ö. F., An evaluation of primary school students’ views about noise levels in school, International Electronic Journal of Elementary Education, 9(4) 725-740, 2017.
  • 21. Ryua J., Hansol S., Yonghee K., Effect of the suspended ceiling with low-frequency resonant panel absorber on heavyweight floor impact sound in the building, Building and Environment, 139 1-7, 2018.
  • 22. Asakura T., Numerical investigation of the sound-insulation effect of a suspended ceiling structure with arrayed Helmholtz resonators by the finite-difference time-domain method, Applied Acoustics, 172 107601, 2021.
  • 23. Pracki P., Dziedzicki M., Komorzycka P., Ceiling, and wall illumination, utiliance, and power in interior lighting, Energies, 13 18 4744, 2020.
  • 24. Hung Anh, L. D., Pásztory, Z., An overview of factors influencing thermal conductivity of building insulation materials, Journal of Building Engineering, 44 102604, 2021.
  • 25. Celadyn M., Environmental activation of inner space components in sustainable interior design, Sustainability, 10 1945, 2018.
  • 26. Yıldırım N., Design of adhesive-free bio-based suspended ceiling tiles using nanocellulose, BioResources, 13 4 7360-7370, 2018.
  • 27. Ginestet S., Aschan-Leygonie C., Bayeux T., Keirsbulck M., Mould in indoor environments: The role of heating, ventilation, and fuel poverty. A French perspective, Building and Environment, 169 106577, 2020.
  • 28. Chou T., Tang C., Chuang Y., Lin, C., Study on Smoke Leakage Performance of Suspended Ceiling System, Sustainability, 12 18 7244, 2020.
  • 29. Gravit M.V. ve Golub E.V. Fireproof suspended ceilings with high fire resistance limits, Magazine of Civil Engineering, 84 8 75-85, 2018.
  • 30. Luo Z., Xue J., Zhou T., Qi L., Zhao X., Shaking table tests and seismic design suggestions for innovative suspended ceiling systems with detachable metal panels, Engineering Structures, 232 111830, 2021.
  • 31. Zhou T., Wang X., Liu W., Zhang Z., Ma B., Tan W., Shaking table tests on seismic response of discontinuous suspended ceilings, Journal of Building Engineering, 43 102916, 2021.
  • 32. Merino M. R., Saez P. V., Longobardi I., Astorqui J. S. C., Porras-Amares C., Redesigning lighweight gypsum with mixes of polystrene waste from consruction and demolition waste. Journal of Cleaner Production, 220 144-151, 2019.
  • 33. Zorlu K. ve Karadayı T. T., İç mekan hava kalitesinde yapı malzemelerinin rolü, Sinop Üniversitesi Fen Bilimleri Dergisi, 5 2 193-211, 2020.
  • 34. Kurtay C. ve Esen O., Ofis yapıları için ışık rafı tasarımında 30° ve 45° enlemlerinde optimum verim sağlanması için bir yöntem. Journal of the Faculty of Engineering and Architecture of Gazi University, 34 2 835-844, 2019.
  • 35. Krusaa M. R., Hviid C. A., Combining suspended radiant ceiling with diffuse ventilation – Numerical performance analysis of low-energy office space in a temperate climate, Journal of Building Engineering, 38 102161, 2021.
  • 36. Kokulu N. ve Özgünler S. A. Evaluation of the effects of building materials on human health and healthy material selection. Gazi University Journal of Science, 32 1 14-25, 2019.
  • 37. Allen E. ve Iano J., Fundamentals of Building Construction, Materials and Methods, John Wiley and Sons, New Jersey, U.S.A., 2019.
  • 38. Lyons A., Materials for Architects and Builders, Butterworth-Heinemann, Elsevier, Oxford, England, 2019.
  • 39. Kılıç O., Kafe iç mekan tasarımında ahşap kompozit malzemelerin kullanımının irdelenmesi, Elektronik Sosyal Bilimler Dergisi, 16 63 1270-1281, 2017.
  • 40. Berge B., The Ecology of Building Materials, Architectural Press, Oxford, England, 2009.
  • 41. Roaf, S., Fuentes, M., Thomas, S., Ecohouse2, a Design Guide, Architectural Press, Elsevier, Oxford, England, 2012.
  • 42. Calkins M., Materials for Sustainable Sites. A Complete Guide to the Evaluation, Selection, and Use of Sustainable Construction Materials, John Wiley and Sons, New Jersey, U.S.A., 2009.
  • 43. Guo Y., Zhou Y., Xu Y., Engineering polymers with metal-like thermal conductivity—Present status and future perspectives, Polymer, 233 (October), 124168, 2021.
  • 44. Bell V. B., Rand P., Materials for Architectural Design2, Laurence King Publishing, London, England, 2014.
  • 45. Hegger M., Drexler H., Zeumer M., Basics Materials, Birkhäuser, Boston, U.S.A., 2017.
  • 46. Fernandez J., Material Architecture, Emergent Materials for Innovative Buildings and Ecological Construction. Architectural Press, Elsevier, Oxford, England, 2008.
  • 47. Gür N. V., Yapı Kabuğu ve Yenilikçi Yaklaşımlar, Yapıda Yenilikçi Yaklaşımlar, Editör: Koman İ., MSGSÜ Yayınları. İstanbul, Türkiye, 158-185, 2015.
  • 48. Compagno A., Glass as a Building Material-Developments and Trends, Translucent Materials, Glass, Plastic, Metals, Editör: Kaltenbach F., Birkhauser, Munich, Germany, 10-13, 2004.
  • 49. Levent T., Upholstery fabrics as a design element in interior space and selection criterias, Mugla Journal of Science and Technology, 2 (2), 38-43, 2016.
  • 50. Avlanmaz Bilecen E., İç mekân tasarımı tekstil seçiminde performans ölçütlerinin değerlendirilmesi, Artium, 8 (1), 61-67, 2020.
  • 51. Missakian A., Nichols, K., Wong, L., From Raw Material to the Finished Product: Interior Textiles, Flexible Composite Materials in Architecture, Construction, and Interiors, Editör: Motro R., Birkhauser, Basel, Swiss, 86-99, 2013.
  • 52. Asadi E., Costa J. J., Gameiro da Silva M., Indoor air quality audit implementation in a hotel building in Portugal, Building and Environment, 46 (8), 1617-1623, 2011.
  • 53. Chen Y.-Y., Chuang Y.-J., Huang C.H., Lin C.-Y., Chien S.-W., The adoption of fire safety management for upgrading the fire safety level of existing hotel buildings, Building and Environment, 51 12.001 311-319, 2012.
  • 54. Cheung M., Fan J., Carbon reduction in a high-density city: A case study of Langham Place Hotel Mongkok Hong Kong, Renewable Energy, 50 06.060 433-440, 2013.
  • 55. Puig R., Kılıç E., Navarro A., Alberti J., Chacon L., Fullana-i-Palmer P., Inventory analysis and carbon footprint of coastland-hotel services: A Spanish case study, Science of the Total Environment, 595 03245 244-254, 2017.
  • 56. Baruti B., Malollari I., Lajci N., Sadiku M., Nikshiq-Kadriu S., Aliu M., Syla, B., Hoxha P., Assessment of noise pollution risk at hotels in Mitrovica – Kosovo, Journal of Environmental Protection and Ecology, 15 4 1519-1525, 2014.
  • 57. Buso T., Dell’Anna F., Bechio C., Bottero M. C., Of comfort and cost: Examining indoors comfort conditions and guests’ valuations in Italian hotel rooms, Energy, Research and Social Science, 32 01.006 94-111, 2017.
  • 58. Saaty T. L., The Analytic Hierarchy Process, Mc-Graww Hill, New York, U.S.A., 1980.
  • 59. Zadeh L. A., Fuzzy sets, Information and Control, 8 3, 338-353, 1965.
  • 60. Hendiani S., Bagherpour M., Developing an integrated index to assess social sustainability in construction industry using fuzzy logic, Journal of Cleaner Production, 230 05.055 647-662, 2019.
  • 61. Plebankiewicz E., Zima K., Wieczorek D., Modelling of time, cost, and risk of construction with using fuzzy logic, Journal of Civil Engineering and Management, 27 6 412–426, 2021.
  • 62. Dağdeviren M., Bulanık analitik hiyerarşi prosesi ile personel seçimi ve bir uygulama. Journal of the Faculty of Engineering and Architecture of Gazi University, 22 4 791-799, 2007.
  • 63. Nguyen D.-T., Le-Hoai L., Basenda Tarigan P., Tran D.-H., Tradeoff time cost quality in repetitive construction project using fuzzy logic approach and symbiotic organism search algorithm, Alexandria Engineering Journal, 61 2 1499-1518, 2022.
  • 64. Zimmermann H. J., Fuzzy set theory and its application, Kluwer Academic Publishers, Boston, U.S.A., 1990.
  • 65. Prakash, T. N., Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach (Yayınlanmamış yüksek lisans tezi), International Institute for Geo-Information Science and Earth Observation, ITC, Enschede, Holland, 2003.
  • 66. Chan F. T. S., Chan M. H., Tang, N. K. H., Evaluation methodologies for technology selection, Journal of Materials Processing Technology, 107 1-3 330-337, 2000.
  • 67. Opricovic S., ve Tseng G. H., Defuzzification within a multicriteria decision model, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 115 635-652, 2003.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Research Articles
Authors

Merve Betül Güler 0000-0001-8346-6946

Esin Kasapoğlu 0000-0002-0530-1422

Publication Date June 29, 2022
Submission Date March 12, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Güler, M. B., & Kasapoğlu, E. (2022). Konaklama yapılarında asma tavan kaplama malzemelerinin bulanık AHP ile seçimi. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 3(1), 22-36.
AMA Güler MB, Kasapoğlu E. Konaklama yapılarında asma tavan kaplama malzemelerinin bulanık AHP ile seçimi. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. June 2022;3(1):22-36.
Chicago Güler, Merve Betül, and Esin Kasapoğlu. “Konaklama yapılarında Asma Tavan Kaplama Malzemelerinin bulanık AHP Ile seçimi”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 3, no. 1 (June 2022): 22-36.
EndNote Güler MB, Kasapoğlu E (June 1, 2022) Konaklama yapılarında asma tavan kaplama malzemelerinin bulanık AHP ile seçimi. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 3 1 22–36.
IEEE M. B. Güler and E. Kasapoğlu, “Konaklama yapılarında asma tavan kaplama malzemelerinin bulanık AHP ile seçimi”, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 3, no. 1, pp. 22–36, 2022.
ISNAD Güler, Merve Betül - Kasapoğlu, Esin. “Konaklama yapılarında Asma Tavan Kaplama Malzemelerinin bulanık AHP Ile seçimi”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 3/1 (June 2022), 22-36.
JAMA Güler MB, Kasapoğlu E. Konaklama yapılarında asma tavan kaplama malzemelerinin bulanık AHP ile seçimi. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022;3:22–36.
MLA Güler, Merve Betül and Esin Kasapoğlu. “Konaklama yapılarında Asma Tavan Kaplama Malzemelerinin bulanık AHP Ile seçimi”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 3, no. 1, 2022, pp. 22-36.
Vancouver Güler MB, Kasapoğlu E. Konaklama yapılarında asma tavan kaplama malzemelerinin bulanık AHP ile seçimi. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022;3(1):22-36.