Research Article
BibTex RIS Cite

Investigation of Polymer Hybrid Ball Bearings' Dynamic Behaviour

Year 2023, Volume: 4 Issue: 2, 40 - 49, 31.12.2023

Abstract

Contact mechanics must be analyzed to determine the dynamic characteristics of polymer hybrid bearings. Since the polymer bearings have contact surfaces of polymer-polymer, polymer-glass, or polymer-steel, the Hertz contact theory used to examine the contact mechanics of conventional bearings cannot be directly used. Due to the elastoplastic structure of polymer materials, elastoplastic contact mechanics is used in examining contact mechanics. In this study, the contact mechanics of the polymer bearing were analyzed as elastoplastic contact and were included in the shaft-bearing system model. An algorithm was developed in the MATLAB environment using the geometry of the 6203 bearings, and its dynamic characteristics were examined through simulations. The equations of motion are simulated at different shaft speeds with an elastic region assumption to determine the dynamic characteristics of polymer hybrid bearings. The results are discussed in the time-frequency domain.

Project Number

06/2018-08

References

  • Ghaednia, H., Pope, S. A., Jackson, R. L., and Marghitu, D. B. A comprehensive study of the elasto-plastic contact of a sphere and a flat. Tribology International, 93, 78-90, 2016.
  • Kogut, L., and Etsion, I. Elastic-plastic contact analysis of a sphere and a rigid flat. Journal of Applied Mechanics, 69(5), 657-662, 2002.
  • Jackson, R. L., and Green, I. A finite element study of elasto-plastic hemispherical contact against a rigid flat. Transactions of the ASME-F-Journal of Tribology, 127(2), 343-354, 2005.
  • Jackson, R. L., and Green, I. A finite element study of elasto-plastic hemispherical contact. International Joint Tribology Conference. 37068, 65-72, 2003.
  • Brake, M. R. An analytical elastic-perfectly plastic contact model. International Journal of Solids and Structures, 49(22), 3129-3141, 2012.
  • Jamari, J., and Schipper, D. J. Anelastic–plastic contact model of ellipsoid bodies. Tribology letters, 21(3), 262-271, 2006.
  • Zhao, Y., Maietta, D. M., and Chang, L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME JOURNAL OF TRIBOLOGY,122(1), 86-93, 2000.
  • Li, L. Y., Wu, C. Y., and Thornton, C. A theoretical model for the contact of elastoplastic bodies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(4), 421-431, 2001.
  • Sharma, A., and Jackson, R. L. A finite element study of an elasto-plastic disk or cylindrical contact against a rigid flat in plane stress with bilinear hardening. Tribology Letters, 65(3), 1-12, 2017.
  • Yau, L. C., Zamri, W. F. H. W., Mohamed, I. F., Kamal, A., and Ariffin, M. F. M. D. An Elasto-Plastic Ball Bearing Contact with Bilinear Hardening. International Journal of Innovative Technology and Exploring Engineering, 9(4), 2020.
  • Yau, L. C., Zamri, W. F. H. W., Din, M. F. M., Fadhlina, I., and Mohamed, A. A. Elastic and Elasto-Plastic Contact Behavior on Ball Bearing. International Journal of Innovative Technology and Exploring Engineering, 8(6), 2020.
  • Song, Z., and Komvopoulos, K. Elastic–plastic spherical indentation: deformation regimes, evolution of plasticity, and hardening effect. Mechanics of Materials, 61, 91-100, 2013.
  • Ogar, P., Ugryumova, E., Gorokhov, D., and Zhuk, A. Influence of the of hardenable material on elastoplastic flattening of spherical asperities. Materials Today: Proceedings, 38, 1638-1643, 2021.
  • Deng, Q., Yin, X., and Abdel Wahab, M. A Comparative Study on Indentation and Flattening Contacts. Fracture, Fatigue and Wear, 67-79, Springer, Singapore, 2020.
  • Ogar, P., Gorokhov, D., and Ugryumova, E. Indentation and flattening of rough surfaces spherical asperities. International Journal of Engineering and Technology (UAE), 7(2.23), 188-191, 2018.
  • Jackson, R. L., and Kogut, L. A comparison of flattening and indentation approaches for contact mechanics modeling of single asperity contacts. Journal of Tribology, 128(1), 209-212, 2006.
  • Mesarovic, S. D., and Fleck, N. A. Spherical indentation of elastic–plastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1987), 2707-2728, 1999.
  • Jackson, R. L., Ghaednia, H., and Pope, S. A solution of rigid–perfectly plastic deep spherical indentation based on slip-line theory. Tribology Letters, 58(3), 1-7, 2015.
  • Gustafsson, O. G., and Tallian, T. Study of the vibration characteristics of bearings. SKF INDUSTRIES INC PHILADELPHIA PA, 1963.
  • Karaçay T. Açısal Temaslı Rulmanlarla Yataklanmış Şaftların Dinamiği ve Rulman Hatalarının Deneysel Analizi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2006.
  • Meyer, L. D., Ahlgren, F. F., and Weichbrodt, B. An analytic model for ball bearing vibrations to predict vibration response to distributed defects. ASME. J. Mech. Des. 102(2): 205-210, 1980.
  • Patil, M. S., Mathew, J., Rajendrakumar, P. K., and Desai, S. A theoretical model to predict the effect of localized defect on vibrations associated with ball bearings. International Journal of Mechanical Sciences, 52.9, 1193-1201, 2010.
  • Mufazzal, S., Muzakkir, S. M., and Khanam, S. Theoretical and experimental analyses of vibration impulses and their influence on accurate diagnosis of ball bearing with localized outer race defect. Journal of Sound and Vibration, 513, 116407, 2021.
  • Yu, G., Su, M., Xia, W., Wu, R., and Wang, Q. Vibration characteristics of deep groove ball bearing based on 4-DOF mathematical model. Procedia Engineering, 174, 808-814, 2017.
  • Tandon, N., and Choudhury, A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. Journal of sound and vibration, 205(3), 275-292, 1997.
  • Aliustaoğlu, C., Ocak, H. ve Ertunç, H. M. Rulman Titreşim analizi ile bölgesel hataların incelenmesi. Otomatik Kontrol Ulusal Toplantısı’07 Bildiriler Kitabı, 451- 456, 2007.
  • Harris, T.A., Rolling Bearing Analysis 4th edition, Jon Wiley&Sons, New York, 2001.

Polimer Hibrid Rulmanların Dinamik Davranışının İncelenmesi

Year 2023, Volume: 4 Issue: 2, 40 - 49, 31.12.2023

Abstract

Polimer hibrid rulmanların dinamik özelliklerini belirlemek için temas mekaniğinin analiz edilmesi gerekmektedir. Polimer rulmanlar polimer-polimer, polimer-cam veya polimer-çelik temas yüzeylerine sahip olduğundan, geleneksel rulmanların temas mekaniğini incelemek için kullanılan Hertz temas teorisi doğrudan kullanılamamaktadır. Polimer malzemelerin elastoplastik yapısından dolayı temas mekaniğinin incelenmesinde elastoplastik temas mekaniği kullanılmaktadır. Bu çalışmada, polimer hibrid rulmanın temas mekaniği elastoplastik temas olarak analiz edilmiş ve şaft-rulman sistemi modeline dahil edilmiştir. 6203 rulmanın geometrisi kullanılarak MATLAB ortamında bir algoritma geliştirilmiş ve simülasyonlar aracılığıyla dinamik özellikleri incelenmiştir. Polimer hibrid rulmanların dinamik özelliklerini belirlemek için hareket denklemleri rulmanın elastik bölgede olduğu kabul edilerek farklı mil hızlarında simüle edilmiştir. Sonuçlar zaman-frekans alanında tartışılmıştır.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

06/2018-08

References

  • Ghaednia, H., Pope, S. A., Jackson, R. L., and Marghitu, D. B. A comprehensive study of the elasto-plastic contact of a sphere and a flat. Tribology International, 93, 78-90, 2016.
  • Kogut, L., and Etsion, I. Elastic-plastic contact analysis of a sphere and a rigid flat. Journal of Applied Mechanics, 69(5), 657-662, 2002.
  • Jackson, R. L., and Green, I. A finite element study of elasto-plastic hemispherical contact against a rigid flat. Transactions of the ASME-F-Journal of Tribology, 127(2), 343-354, 2005.
  • Jackson, R. L., and Green, I. A finite element study of elasto-plastic hemispherical contact. International Joint Tribology Conference. 37068, 65-72, 2003.
  • Brake, M. R. An analytical elastic-perfectly plastic contact model. International Journal of Solids and Structures, 49(22), 3129-3141, 2012.
  • Jamari, J., and Schipper, D. J. Anelastic–plastic contact model of ellipsoid bodies. Tribology letters, 21(3), 262-271, 2006.
  • Zhao, Y., Maietta, D. M., and Chang, L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME JOURNAL OF TRIBOLOGY,122(1), 86-93, 2000.
  • Li, L. Y., Wu, C. Y., and Thornton, C. A theoretical model for the contact of elastoplastic bodies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(4), 421-431, 2001.
  • Sharma, A., and Jackson, R. L. A finite element study of an elasto-plastic disk or cylindrical contact against a rigid flat in plane stress with bilinear hardening. Tribology Letters, 65(3), 1-12, 2017.
  • Yau, L. C., Zamri, W. F. H. W., Mohamed, I. F., Kamal, A., and Ariffin, M. F. M. D. An Elasto-Plastic Ball Bearing Contact with Bilinear Hardening. International Journal of Innovative Technology and Exploring Engineering, 9(4), 2020.
  • Yau, L. C., Zamri, W. F. H. W., Din, M. F. M., Fadhlina, I., and Mohamed, A. A. Elastic and Elasto-Plastic Contact Behavior on Ball Bearing. International Journal of Innovative Technology and Exploring Engineering, 8(6), 2020.
  • Song, Z., and Komvopoulos, K. Elastic–plastic spherical indentation: deformation regimes, evolution of plasticity, and hardening effect. Mechanics of Materials, 61, 91-100, 2013.
  • Ogar, P., Ugryumova, E., Gorokhov, D., and Zhuk, A. Influence of the of hardenable material on elastoplastic flattening of spherical asperities. Materials Today: Proceedings, 38, 1638-1643, 2021.
  • Deng, Q., Yin, X., and Abdel Wahab, M. A Comparative Study on Indentation and Flattening Contacts. Fracture, Fatigue and Wear, 67-79, Springer, Singapore, 2020.
  • Ogar, P., Gorokhov, D., and Ugryumova, E. Indentation and flattening of rough surfaces spherical asperities. International Journal of Engineering and Technology (UAE), 7(2.23), 188-191, 2018.
  • Jackson, R. L., and Kogut, L. A comparison of flattening and indentation approaches for contact mechanics modeling of single asperity contacts. Journal of Tribology, 128(1), 209-212, 2006.
  • Mesarovic, S. D., and Fleck, N. A. Spherical indentation of elastic–plastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1987), 2707-2728, 1999.
  • Jackson, R. L., Ghaednia, H., and Pope, S. A solution of rigid–perfectly plastic deep spherical indentation based on slip-line theory. Tribology Letters, 58(3), 1-7, 2015.
  • Gustafsson, O. G., and Tallian, T. Study of the vibration characteristics of bearings. SKF INDUSTRIES INC PHILADELPHIA PA, 1963.
  • Karaçay T. Açısal Temaslı Rulmanlarla Yataklanmış Şaftların Dinamiği ve Rulman Hatalarının Deneysel Analizi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2006.
  • Meyer, L. D., Ahlgren, F. F., and Weichbrodt, B. An analytic model for ball bearing vibrations to predict vibration response to distributed defects. ASME. J. Mech. Des. 102(2): 205-210, 1980.
  • Patil, M. S., Mathew, J., Rajendrakumar, P. K., and Desai, S. A theoretical model to predict the effect of localized defect on vibrations associated with ball bearings. International Journal of Mechanical Sciences, 52.9, 1193-1201, 2010.
  • Mufazzal, S., Muzakkir, S. M., and Khanam, S. Theoretical and experimental analyses of vibration impulses and their influence on accurate diagnosis of ball bearing with localized outer race defect. Journal of Sound and Vibration, 513, 116407, 2021.
  • Yu, G., Su, M., Xia, W., Wu, R., and Wang, Q. Vibration characteristics of deep groove ball bearing based on 4-DOF mathematical model. Procedia Engineering, 174, 808-814, 2017.
  • Tandon, N., and Choudhury, A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. Journal of sound and vibration, 205(3), 275-292, 1997.
  • Aliustaoğlu, C., Ocak, H. ve Ertunç, H. M. Rulman Titreşim analizi ile bölgesel hataların incelenmesi. Otomatik Kontrol Ulusal Toplantısı’07 Bildiriler Kitabı, 451- 456, 2007.
  • Harris, T.A., Rolling Bearing Analysis 4th edition, Jon Wiley&Sons, New York, 2001.
There are 27 citations in total.

Details

Primary Language English
Subjects Control Engineering, Mechatronics and Robotics (Other)
Journal Section Research Articles
Authors

Burcu Küçükoğlu Doğan 0000-0002-0447-9456

Tuncay Karaçay 0000-0002-6014-5610

Project Number 06/2018-08
Publication Date December 31, 2023
Submission Date November 28, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Küçükoğlu Doğan, B., & Karaçay, T. (2023). Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 4(2), 40-49.
AMA Küçükoğlu Doğan B, Karaçay T. Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. December 2023;4(2):40-49.
Chicago Küçükoğlu Doğan, Burcu, and Tuncay Karaçay. “Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 4, no. 2 (December 2023): 40-49.
EndNote Küçükoğlu Doğan B, Karaçay T (December 1, 2023) Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 4 2 40–49.
IEEE B. Küçükoğlu Doğan and T. Karaçay, “Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour”, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 4, no. 2, pp. 40–49, 2023.
ISNAD Küçükoğlu Doğan, Burcu - Karaçay, Tuncay. “Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 4/2 (December 2023), 40-49.
JAMA Küçükoğlu Doğan B, Karaçay T. Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023;4:40–49.
MLA Küçükoğlu Doğan, Burcu and Tuncay Karaçay. “Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 4, no. 2, 2023, pp. 40-49.
Vancouver Küçükoğlu Doğan B, Karaçay T. Investigation of Polymer Hybrid Ball Bearings’ Dynamic Behaviour. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023;4(2):40-9.