Amid growing data complexity, artificial intelligence (AI) holds transformative potential for auditing. This study explores AI’s role in enhancing audit efficiency and effectiveness, employing a qualitative research design based on secondary sources. It delves into the impacts of AI-driven technologies, like machine learning, on risk assessment, anomaly detection, and continuous auditing. While AI offers substantial benefits such as improved speed and accuracy, challenges related to data privacy, skills adaptation, and ethics persist. The paper calls for regulatory frameworks and skill sets to address them, providing practical guidelines for professionals and regulators and contributes to understanding AI’s transformative role in auditing.
Artan veri karmaşıklığı çağında, Yapay Zekâ (YZ) denetim için dönüştürücü bir potansiyele sahiptir. Bu çalışmada, ikincil kaynaklara dayanan nitel bir araştırma yöntemi kullanılarak YZ’nin denetim verimliliği ve etkinliğini artırmadaki rolü incelenmiştir. Makine öğrenmesi gibi YZ destekli teknolojilerin risk değerlendirmesi, anormallik tespiti ve sürekli denetim üzerindeki etkilerine odaklanılmıştır. YZ, hız ve doğruluk gibi önemli faydalar sağlarken, veri gizliliği, yetkinliklerin uyarlanması ve etik konularla ilgili zorluklar devam etmektedir. Bu çalışmada, bu sorunları ele almak için düzenleyici çerçeveler ve beceri setlerinin geliştirilmesi gerektiği vurgulanmış ve profesyonellere ve düzenleyicilere pratik öneriler sunulmuştur. Bu çalışma ile, denetimde YZ’nin dönüştürücü rolünün anlaşılmasına katkı sağlanması amaçlanmıştır.
Primary Language | English |
---|---|
Subjects | Institutional Governance, Accounting, Auditing and Accountability (Other) |
Journal Section | MAIN SECTION |
Authors | |
Early Pub Date | June 30, 2025 |
Publication Date | June 30, 2025 |
Submission Date | November 1, 2024 |
Acceptance Date | March 3, 2025 |
Published in Issue | Year 2025 Volume: 27 Issue: 2 |
Authorship
MBDD follows the guidelines in COPE Authorship Guideline to ensure fair recognition of contributions to a research paper (https://publicationethics.org/guidance/discussion-document/authorship ). Authorship carries both credit and responsibility, and it is essential that all listed authors have made significant contributions to the research.
For multi-author studies, the Contributions of Authors must be declared after the conclusion and before the bibliography of the paper. The authors' initials and last names should be used to indicate which author contributed to which part of the manuscript. Details can be found by clicking the “Article Submission Checklist” button. The authors can acknowledge contributions that do not merit authorship.
The author(s) should disclose the use of generative Artificial Intelligence (AI) and AI-assisted tools in design and implementation of the research. Such use need to be disclosed within the methodology section of the manuscript. Use of AI does not preclude the manuscript from publication, rather provides a transparent picture of the research.