Research Article
BibTex RIS Cite

ISTANBUL KONUT FİYATLARININ YAPAY ZEKA İLE TAHMİNLEMESİ: ARIMA VE LSTM KARŞILAŞTIRMASI

Year 2025, Volume: 27 Issue: 3, 235 - 252, 30.09.2025
https://doi.org/10.31460/mbdd.1668933

Abstract

Türkiye’de hane halkları, son yıllarda yüksek enflasyon nedeniyle yüksek konut fiyatlarıyla mücadele etmekte ve fiyat tahmini tekniklerinin konut yatırımı kararlarında yardımcı olabileceği düşünülmektedir. Bu çalışma, İstanbul konut fiyatlarını bir ekonometrik model olan ARIMA ve bir makine öğrenimi algoritması olan LSTM’yi karşılaştırarak tahminlemektedir. Ilk aşamada, yalnızca Türkiye Cumhuriyet Merkez Bankası'nın üç aylık ortalama konut birim fiyatları kullanılmıştır. İkinci aşamada modellere iki makroekonomik değişken, konut kredi faiz oranları ve enflasyon oranları (TÜFE) eklenmiştir. Analiz Sonuçlar, LSTM modelinden alınan tahminlerin ARIMA yaklaşımına göre daha başarılı olduğunu göstermiştir. Bu araştırma, yapay zekâ uygulamalarının sınırlı olduğu konut sektöründe önemli bir boşluğu doldurmayı amaçlamaktadır.

References

  • Aktürk, C. (2020). Yapay Zekâ ile Konut Fiyatlarının Tahmin Edilmesi. Turkish Studies-Information Technologies and Applied Sciences. 15 (2), 183-194. 10.29228/TurkishStudies.43161.
  • Albeladi, K., Zafar, B. & Mueen, A. (2023) “Time Series Forecasting using LSTM and ARIMA” International Journal of Advanced Computer Science and Applications(IJACSA), 14(1), http://dx.doi.org/10.14569/IJACSA.2023.0140133
  • Alzain, E., Alshebami, A. S., Aldhyani, T. H. H., & Alsubari, S. N. (2022). Application of Artificial Intelligence for Predicting Real Estate Prices: The Case of Saudi Arabia. Electronics, 11(21), 3448. https://doi.org/10.3390/electronics11213448
  • Arf, C. (1959). Makine Düşünebilir mi ve Nasıl Düşünebilir? Atatürk Üniversitesi 1958-1959 Öğretim Yılı Halk Konferansları (1), 91-103.
  • Box, G.E.P. & Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control. 2nd Edition, Holden-Day, S. Francisco.
  • Burhan, H. A. (2023). Konut Fiyatları Tahmininde Makine Öğrenmesi Sınıflandırma Algoritmalarının Kullanılması: Kütahya Kent Merkezi Örneği. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi (76), 221-237. https://doi.org/10.51290/dpusbe.1249461
  • CBRT (2024). All Series Statistics. Available at https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket. Accessed on March 19, 2025.
  • Conway, J. (2018). Artificial Intelligence and Machine Learning: Current Applications in Real Estate, Master Thesis. Massachusetts Institute of Technology.
  • Gupta, M. (2024). What is LSTM (Long Short Term Memory)? Available at https://www.appliedaicourse.com/blog/lstm-in-machine-learning/. Accessed on September 17, 2025.
  • Haque, D. (2024). Transforming Japan real estate, arXiv:2405.20715v1, https://doi.org/10.48550/arXiv.2405.20715
  • Kang, J., Lee, H. J., Jeong, S. H., Lee, H. S., & Oh, K. J. (2020). Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence. Sustainability, 12(7), 2899. https://doi.org/10.3390/su12072899
  • Kayakuş, M., Terzioğlu, M., & Yetiz, F. (2022) Forecasting housing prices in Turkey by machine learning methods. Aestimum 80: 33-44. doi: 10.36253/aestim-12320
  • Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks. Future Internet, 15(8), 255. https://doi.org/10.3390/fi15080255
  • Makridakis S., & Hibon M. (1997). ARMA Models and the Box-Jenkins Methodology, Journal of Forecasting, 16: 147-163.
  • Mangaleswaran, S., Vigneshwari, S. (2020). Prediction of Housing Prices Using Machine Learning, Time Series ARIMA Model and Artificial Neural Network. In: Kumar, A., Paprzycki, M., Gunjan, V. (eds) ICDSMLA 2019. Lecture Notes in Electrical Engineering, vol 601. Springer, Singapore. https://doi.org/10.1007/978-981-15-1420-3_110
  • Monika, R., Nithyasree, J., Valarmathi V., Hemalakshmi, G. R., Prakash, N. B. (2021), House Price Forecasting Using Machine Learning Methods, Turkish Journal of Computer and Mathematics Education, 12(11), 3624-3632.
  • Muggleton, S. (2014). Alan Turing and the development of Artificial Intelligence. AI Communications, 27(1), 3-10. https://doi.org/10.3233_AIC-130579
  • OECD (2024). Housing Prices. Available at https://www.oecd.org/en/data/indicators/housing-prices.html?oecdcontrol-82d381eddd-var3=1947. Accessed on March 19, 2025.
  • Pan, Y. (2016). Heading toward Artificial Intelligence 2.0, Engineering, 2(4), 409-413, ISSN 2095-8099, https://doi.org/10.1016/J.ENG.2016.04.018.
  • Park, B., Bae, J. K. (2015). Using machine learning algorithms for housing price prediction. Expert Syst. Appl. 42(6), 2928–2934. https://doi.org/10.1016/j.eswa.2014.11.040
  • Rampini, L., Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate market prices, Journal of Property Investment & Finance, 40(6), 588-611, DOI 10.1108/JPIF-08-2021-0073
  • Rossini, P. (2000). Using Expert Systems and Artificial Intelligence For Real Estate Forecasting, Sixth Annual Pacific-Rim Real Estate Society Conference, Sydney, Australia, 1-10.
  • Siami-Namini, S., Tavakoli, N., Siami Namin A. (2019). A Comparative Analysis of Forecasting Financial Time Series Using ARIMA, LSTM, and BiLSTM, https://doi.org/10.48550/arXiv.1911.09512
  • Sümer, L. (2017). Developing a Real Estate-Pension Fund Investment Ecosystem: Turkey Real Estate Fund. Ph.D. Thesis, Boğaziçi University.
  • Thakur, D. (2018). LSTM and its equations. Available at https://medium.com/@divyanshu132/lstm-and-its-equations-5ee9246d04af. Accessed on March 19, 2025.
  • Trindade Neves, F., Aparicio, M., & de Castro Neto, M. (2024). The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities. Applied Sciences, 14(5), 2209. https://doi.org/10.3390/app14052209
  • Truong, Q., Nguyen M., Dang, H., Mei, B. (2020). Housing Price Prediction via Improved Machine Learning Techniques, Procedia Computer Science, 174, 433-442, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.06.111.
  • Turing, A. M. (1950). Computing Machinery and Intelligence. Mind 49: 433-460.
  • Viriato, J. C. (2019). AI and Machine Learning in Real Estate Investment, The Journal of Portfolio Management Special Real Estate, 45( 7), 43 – 54, DOI: 10.3905/jpm.2019.45.7.043
  • Winky, K.O. H, Bo-Sin, T. & Siu, W. W. (2021). Predicting property prices with machine learning algorithms, Journal of Property Research, 38(1), 48-70, DOI: 10.1080/09599916.2020.1832558
  • Xie, M. (2019). Development of Artificial Intelligence and Effects on Financial System, Journal of Physics: Conference Series,1187, 032084
  • Zakaria, S., Abdul Manaf, S. M., Amron, M. T., & Mohd Suffian, M. T. (2023). Has the World of Finance Changed? A Review of the Influence of Artificial Intelligence on Financial Management Studies. Information Management and Business Review, 15(4(SI)I), 420-432. https://doi.org/10.22610/imbr.v15i4(SI)I.3617
  • Zhang, C., Yang, Lu. (2021). Study on artificial intelligence: The state of the art and future prospects, Journal of Industrial Information Integration, 23 (100224). Volume 23, 100224, ISSN 2452-414X, https://doi.org/10.1016/j.jii.2021.100224

PREDICTING HOUSING PRICES IN ISTANBUL USING ARTIFICIAL INTELLIGENCE: A COMPARATIVE ANALYSIS OF ARIMA AND LSTM MODELS

Year 2025, Volume: 27 Issue: 3, 235 - 252, 30.09.2025
https://doi.org/10.31460/mbdd.1668933

Abstract

Due to high inflation, Türkiye has been struggling with high housing prices. This study compares two forecasting models: an econometric time-series model, ARIMA, and a machine learning algorithm, LSTM, in predicting housing prices in Istanbul. First, only the Central Bank’s quarterly average housing unit prices are used in both models. Second, two crucial macroeconomic variables, the mortgage loan interest rate and the inflation rate (as measured by the CPI), are added to the model. The results reveal that the forecast obtained from LSTM outperforms the ARIMA approach. This research fills a significant gap in the literature where the implementation of artificial intelligence in the housing industry is limited.

References

  • Aktürk, C. (2020). Yapay Zekâ ile Konut Fiyatlarının Tahmin Edilmesi. Turkish Studies-Information Technologies and Applied Sciences. 15 (2), 183-194. 10.29228/TurkishStudies.43161.
  • Albeladi, K., Zafar, B. & Mueen, A. (2023) “Time Series Forecasting using LSTM and ARIMA” International Journal of Advanced Computer Science and Applications(IJACSA), 14(1), http://dx.doi.org/10.14569/IJACSA.2023.0140133
  • Alzain, E., Alshebami, A. S., Aldhyani, T. H. H., & Alsubari, S. N. (2022). Application of Artificial Intelligence for Predicting Real Estate Prices: The Case of Saudi Arabia. Electronics, 11(21), 3448. https://doi.org/10.3390/electronics11213448
  • Arf, C. (1959). Makine Düşünebilir mi ve Nasıl Düşünebilir? Atatürk Üniversitesi 1958-1959 Öğretim Yılı Halk Konferansları (1), 91-103.
  • Box, G.E.P. & Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control. 2nd Edition, Holden-Day, S. Francisco.
  • Burhan, H. A. (2023). Konut Fiyatları Tahmininde Makine Öğrenmesi Sınıflandırma Algoritmalarının Kullanılması: Kütahya Kent Merkezi Örneği. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi (76), 221-237. https://doi.org/10.51290/dpusbe.1249461
  • CBRT (2024). All Series Statistics. Available at https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket. Accessed on March 19, 2025.
  • Conway, J. (2018). Artificial Intelligence and Machine Learning: Current Applications in Real Estate, Master Thesis. Massachusetts Institute of Technology.
  • Gupta, M. (2024). What is LSTM (Long Short Term Memory)? Available at https://www.appliedaicourse.com/blog/lstm-in-machine-learning/. Accessed on September 17, 2025.
  • Haque, D. (2024). Transforming Japan real estate, arXiv:2405.20715v1, https://doi.org/10.48550/arXiv.2405.20715
  • Kang, J., Lee, H. J., Jeong, S. H., Lee, H. S., & Oh, K. J. (2020). Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence. Sustainability, 12(7), 2899. https://doi.org/10.3390/su12072899
  • Kayakuş, M., Terzioğlu, M., & Yetiz, F. (2022) Forecasting housing prices in Turkey by machine learning methods. Aestimum 80: 33-44. doi: 10.36253/aestim-12320
  • Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks. Future Internet, 15(8), 255. https://doi.org/10.3390/fi15080255
  • Makridakis S., & Hibon M. (1997). ARMA Models and the Box-Jenkins Methodology, Journal of Forecasting, 16: 147-163.
  • Mangaleswaran, S., Vigneshwari, S. (2020). Prediction of Housing Prices Using Machine Learning, Time Series ARIMA Model and Artificial Neural Network. In: Kumar, A., Paprzycki, M., Gunjan, V. (eds) ICDSMLA 2019. Lecture Notes in Electrical Engineering, vol 601. Springer, Singapore. https://doi.org/10.1007/978-981-15-1420-3_110
  • Monika, R., Nithyasree, J., Valarmathi V., Hemalakshmi, G. R., Prakash, N. B. (2021), House Price Forecasting Using Machine Learning Methods, Turkish Journal of Computer and Mathematics Education, 12(11), 3624-3632.
  • Muggleton, S. (2014). Alan Turing and the development of Artificial Intelligence. AI Communications, 27(1), 3-10. https://doi.org/10.3233_AIC-130579
  • OECD (2024). Housing Prices. Available at https://www.oecd.org/en/data/indicators/housing-prices.html?oecdcontrol-82d381eddd-var3=1947. Accessed on March 19, 2025.
  • Pan, Y. (2016). Heading toward Artificial Intelligence 2.0, Engineering, 2(4), 409-413, ISSN 2095-8099, https://doi.org/10.1016/J.ENG.2016.04.018.
  • Park, B., Bae, J. K. (2015). Using machine learning algorithms for housing price prediction. Expert Syst. Appl. 42(6), 2928–2934. https://doi.org/10.1016/j.eswa.2014.11.040
  • Rampini, L., Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate market prices, Journal of Property Investment & Finance, 40(6), 588-611, DOI 10.1108/JPIF-08-2021-0073
  • Rossini, P. (2000). Using Expert Systems and Artificial Intelligence For Real Estate Forecasting, Sixth Annual Pacific-Rim Real Estate Society Conference, Sydney, Australia, 1-10.
  • Siami-Namini, S., Tavakoli, N., Siami Namin A. (2019). A Comparative Analysis of Forecasting Financial Time Series Using ARIMA, LSTM, and BiLSTM, https://doi.org/10.48550/arXiv.1911.09512
  • Sümer, L. (2017). Developing a Real Estate-Pension Fund Investment Ecosystem: Turkey Real Estate Fund. Ph.D. Thesis, Boğaziçi University.
  • Thakur, D. (2018). LSTM and its equations. Available at https://medium.com/@divyanshu132/lstm-and-its-equations-5ee9246d04af. Accessed on March 19, 2025.
  • Trindade Neves, F., Aparicio, M., & de Castro Neto, M. (2024). The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities. Applied Sciences, 14(5), 2209. https://doi.org/10.3390/app14052209
  • Truong, Q., Nguyen M., Dang, H., Mei, B. (2020). Housing Price Prediction via Improved Machine Learning Techniques, Procedia Computer Science, 174, 433-442, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.06.111.
  • Turing, A. M. (1950). Computing Machinery and Intelligence. Mind 49: 433-460.
  • Viriato, J. C. (2019). AI and Machine Learning in Real Estate Investment, The Journal of Portfolio Management Special Real Estate, 45( 7), 43 – 54, DOI: 10.3905/jpm.2019.45.7.043
  • Winky, K.O. H, Bo-Sin, T. & Siu, W. W. (2021). Predicting property prices with machine learning algorithms, Journal of Property Research, 38(1), 48-70, DOI: 10.1080/09599916.2020.1832558
  • Xie, M. (2019). Development of Artificial Intelligence and Effects on Financial System, Journal of Physics: Conference Series,1187, 032084
  • Zakaria, S., Abdul Manaf, S. M., Amron, M. T., & Mohd Suffian, M. T. (2023). Has the World of Finance Changed? A Review of the Influence of Artificial Intelligence on Financial Management Studies. Information Management and Business Review, 15(4(SI)I), 420-432. https://doi.org/10.22610/imbr.v15i4(SI)I.3617
  • Zhang, C., Yang, Lu. (2021). Study on artificial intelligence: The state of the art and future prospects, Journal of Industrial Information Integration, 23 (100224). Volume 23, 100224, ISSN 2452-414X, https://doi.org/10.1016/j.jii.2021.100224
There are 33 citations in total.

Details

Primary Language English
Subjects Real Estate Financing
Journal Section MAIN SECTION
Authors

Levent Sümer 0000-0002-2160-8803

Early Pub Date September 28, 2025
Publication Date September 30, 2025
Submission Date April 1, 2025
Acceptance Date June 16, 2025
Published in Issue Year 2025 Volume: 27 Issue: 3

Cite

APA Sümer, L. (2025). PREDICTING HOUSING PRICES IN ISTANBUL USING ARTIFICIAL INTELLIGENCE: A COMPARATIVE ANALYSIS OF ARIMA AND LSTM MODELS. Muhasebe Bilim Dünyası Dergisi, 27(3), 235-252. https://doi.org/10.31460/mbdd.1668933

Authorship
MBDD follows the guidelines in COPE Authorship Guideline to ensure fair recognition of contributions to a research paper (https://publicationethics.org/guidance/discussion-document/authorship ). Authorship carries both credit and responsibility, and it is essential that all listed authors have made significant contributions to the research.

For multi-author studies, the Contributions of Authors must be declared after the conclusion and before the bibliography of the paper. The authors' initials and last names should be used to indicate which author contributed to which part of the manuscript. Details can be found by clicking the “Article Submission Checklist” button. The authors can acknowledge contributions that do not merit authorship.


The author(s) should disclose the use of generative Artificial Intelligence (AI) and AI-assisted tools in design and implementation of the research. Such use need to be disclosed within the methodology section of the manuscript. Use of AI does not preclude the manuscript from publication, rather provides a transparent picture of the research.