BibTex RIS Cite

-

Year 2000, Volume: 1 Issue: 2, 29 - 32, 01.08.2000

Abstract

-

References

  • 1. Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, Martelli MF, Stein H. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor superfamily as a tool for diagnosis and immunotherapy. Blood 1995; 85 : 1-14.
  • 2. Amakawa R, Hakem A, Kundig TM, Matsuyama T, Simard JJL, Timms E, Wakeham A, Mittruecker HW, Griesser H, Takimoto H, Schmits R, Shahinian A, Ohashi PS, Penninger JM, Mak TW. Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell 1996; 84: 551-62.
  • 3. Chiarle R, Podda A, Prolla G, Podack ER, Thorbecke GJ, Inghirami G: CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2 sensitive pathway. J Immunol 1999; 163: 194-205.
  • 4. Kurts C, Carbone FR, Krummel MF, Koch KM, Miller JFAP, Heath WR Signaling through CD30 protects against autoimmune diabetes mediated by CD8 T cells. Nature 1999; 398: 341-4.
  • 5. Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994; 83: 2045-56.
  • 6. Tian SG, Longo DL, Funakoshi S et al. In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large cell lymphoma. Can Res 1995; 55: 5335-41.
  • 7. Pfeifer W, Levi E, Petrogiannis-Haliotis T, Lehmann L, Wang ZX, Kadin ME. A murine xenograft model for human CD30+ anaplastic large cell lymphoma: succesful growth inhibition with an anti-CD30 antibody (HeFi- 1). Am J Pathol 1999; 155: 1353-9.
  • 8. Horie R, Watanabe T. CD30: expression and function in health and disease. Seminars in Immunol 1998; 10: 457- 70.
  • 9. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999; 39: 295- 312.
  • 10. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501-12.
  • 11. Fischer P, Naheva E, Mason DY, Sherrington PD, Hoyle C, Hayhoe FG, Karpas A. A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a highgrade non-Hodgkin’s lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor bchain gene. Blood 1988; 72: 234-40.
  • 12. Hecht TT, Longo DL, Cossman J et al. Production and characterization of a monoclonal antibody that binds Reed-Sternberg cells. J Immunol 1985; 134: 4231-36.
  • 13. Smith CA, Gruss HJ, Davis T et al. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 1993; 73: 1349-60.
  • 14. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066-71.
  • 15. Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes & Development. 1997; 11: 2810-21.
  • 16. Song HY, Regnier CH, Kirschning CJ, Goeddel DV, Rothe M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kB and cjun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. PNAS 1997; 94: 9792-6.
  • 17. Sonenshein GE. Rel/NF-kB transcription factors and the control of apoptosis. Seminars in Cancer Biology 1997; 8: 113-9.
  • 18. Wang CY, Mayo MW, Korneluk RG et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and cIAP1 and c- IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680-3.

CD30 Activation Causes Cell Cycle Arrest Of The CD30+ Anaplastic Large Cell Lymphoma Cell Lines

Year 2000, Volume: 1 Issue: 2, 29 - 32, 01.08.2000

Abstract

Aims: CD30 activation causes growth inhibition of the systemic anaplastic large cell lymphoma cell lines. The mechanism of growth inhibition is not well characterized. Since CD30 does not have a death domain like the other tumor necrosis factor receptor superfamily members Fas and TNFRI, the mechanism of growth inhibition is a matter of controversy. Methods: In this study, we analyzed the growth inhibitory effects of CD30 activation on the systemic ALCL cell line Karpas 299 by using a CD30 activating antibody HeFi-1. We first investigated the presence of apoptosis by Annexin V and propidium iodide staining using flow cytometric analysis. We did not observe any apoptotic changes or cell death during the 72 hours following CD30 activation, despite a decrease in thymidine incorporation, which prompted us to investigate the possibility of cell cycle arrest caused by CD30 activation. Results: Upon synchronization of the cells and incubation with the HeFi-1 antibody, we observed a partial arrest at G1 phase demonstrated by propidium iodide staining of the permeabilized cells. We then investigated the expression of cell cycle inhibitory proteins p16, p21, p27 and retinoblastoma protein (Rb) by Western blotting. We observed expression of p21 and hypo-phosphorylation of Rb protein secondary to CD30 activation. Significance: These results are consistent with cell cycle arrest in the G1 phase of the cell cycle following CD30 activation. This finding is contrary to the accepted belief that CD30 activation causes apoptosis. These findings may help the development of new therapeutic strategies against nodal anaplastic large cell lymphomas.

References

  • 1. Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, Martelli MF, Stein H. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor superfamily as a tool for diagnosis and immunotherapy. Blood 1995; 85 : 1-14.
  • 2. Amakawa R, Hakem A, Kundig TM, Matsuyama T, Simard JJL, Timms E, Wakeham A, Mittruecker HW, Griesser H, Takimoto H, Schmits R, Shahinian A, Ohashi PS, Penninger JM, Mak TW. Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell 1996; 84: 551-62.
  • 3. Chiarle R, Podda A, Prolla G, Podack ER, Thorbecke GJ, Inghirami G: CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2 sensitive pathway. J Immunol 1999; 163: 194-205.
  • 4. Kurts C, Carbone FR, Krummel MF, Koch KM, Miller JFAP, Heath WR Signaling through CD30 protects against autoimmune diabetes mediated by CD8 T cells. Nature 1999; 398: 341-4.
  • 5. Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994; 83: 2045-56.
  • 6. Tian SG, Longo DL, Funakoshi S et al. In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large cell lymphoma. Can Res 1995; 55: 5335-41.
  • 7. Pfeifer W, Levi E, Petrogiannis-Haliotis T, Lehmann L, Wang ZX, Kadin ME. A murine xenograft model for human CD30+ anaplastic large cell lymphoma: succesful growth inhibition with an anti-CD30 antibody (HeFi- 1). Am J Pathol 1999; 155: 1353-9.
  • 8. Horie R, Watanabe T. CD30: expression and function in health and disease. Seminars in Immunol 1998; 10: 457- 70.
  • 9. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999; 39: 295- 312.
  • 10. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501-12.
  • 11. Fischer P, Naheva E, Mason DY, Sherrington PD, Hoyle C, Hayhoe FG, Karpas A. A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a highgrade non-Hodgkin’s lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor bchain gene. Blood 1988; 72: 234-40.
  • 12. Hecht TT, Longo DL, Cossman J et al. Production and characterization of a monoclonal antibody that binds Reed-Sternberg cells. J Immunol 1985; 134: 4231-36.
  • 13. Smith CA, Gruss HJ, Davis T et al. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 1993; 73: 1349-60.
  • 14. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066-71.
  • 15. Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes & Development. 1997; 11: 2810-21.
  • 16. Song HY, Regnier CH, Kirschning CJ, Goeddel DV, Rothe M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kB and cjun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. PNAS 1997; 94: 9792-6.
  • 17. Sonenshein GE. Rel/NF-kB transcription factors and the control of apoptosis. Seminars in Cancer Biology 1997; 8: 113-9.
  • 18. Wang CY, Mayo MW, Korneluk RG et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and cIAP1 and c- IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680-3.
There are 18 citations in total.

Details

Other ID JA84ND87GU
Journal Section Research Article
Authors

Edi Levı This is me

Walther Pfeıfer This is me

Marshall E. Kadın This is me

Publication Date August 1, 2000
Published in Issue Year 2000 Volume: 1 Issue: 2

Cite

EndNote Levı E, Pfeıfer W, Kadın ME (August 1, 2000) CD30 Activation Causes Cell Cycle Arrest Of The CD30+ Anaplastic Large Cell Lymphoma Cell Lines. Meandros Medical And Dental Journal 1 2 29–32.