BibTex RIS Cite

FOTOSENSİTİZE EDİLEN ERİTROSİTLERDEKİ HEMOLİZ KİNETİK MODELİ: ÇOK VURUŞLU HEDEF TEOR

Year 2004, Volume: 5 Issue: 3, 5 - 9, 01.12.2004

Abstract

Amaç:Fotosensitize edilmiş eritrositlerdeki hemoliz hız kinetiğini örnek sistem olarak kullanarak, hücrezarındaki fotosensitizasyon mekanizmasının açıklanması amaçlanmıştır. Fotohemolizin ışığa bağlı oluşan hasar(fotokimyasal safha) ve termal aktivasyonun (termal safha) birlikte olan etkisiyle oluştuğunu kabul eden “ÇokVuruşlu Hedef Teori” 'de; her safhadaki kinetik düzen özel vuru sayıları ile belirlenebilmektedir.Yöntem:Fotohemoliz hızıgerekli olan karanlık inkübasyon zamanını,Lreaksiyon sabitini, ve ise ölçülen üssel değerleri belirtmektedir. Deneyde, pH 7.4, 10 mM tuzlu fosfattamponda hazırlanan insan eritrositleri değişik konsantrasyonlarda protoporfirin IX ile fotosensitif halegetirilmiş ve ışığa maruz bırakılarak gecikmiş fotohemoliz ölçümleri yapılmıştır. Ayrıca gecikmiş fotohemolizverileri “Çok Vuruşlu Hedef Teori” kullanılarak incelenmiştir.Bulgular:Fotohemoliz eğrileri s-şeklinde olup, düşük protoporfirin konsantrasyonu ve ışınlama zamanında tdeğeri daha uzamış olarak ölçülmüştür. Gecikmiş fotohemoliz ölçümlerinde, fotohemoliz hızının soğurulanışınımın karesiyle orantılı olduğu belirlenmiştir. Deneysel ve modelle hesaplanan fotohemoliz eğrileri uyumiçindedir.Sonuç:“Çok Vuruşlu Hedef Teori” ile, fotohemoliz sonuçlarının karakterize edilmesi ve karşılaştırmasıaçısından önemli olduğu gösterilmiştir. Bu kinetik modelle belirlenen değişik konsantrasyonda fotosensitif ajanve ışık dozunun fotohemoliz eğrileri üzerine olan etkisinin, ölçülen deneysel verilerle uyum içinde olması ile“Çok Vuruşlu Hedef Teori” desteklenmektedir

References

  • 1. Bil gi n M.D. Bi ome dical a p plicati o n o f photosensitizer. Illinois Institute of Technology, Chicago IL,ABD, Doktora tezi, 1999.
  • 2. Grossweiner L.I., Fernandez J.M., Bilgin M.D. Photosensitization of red blood cell haemolysis by photodynamic agents. Lasers Med Sci 1998; 13: 42-54.
  • 3. Ben-Hur E.A., Orenstein A., Livne A., Rosenthal I. Photosensitized oxidation of human red blood cells: Cation effects on volume changes and relevance to blood vessel occlusion. Lasers Life Scis 1990; 3: 245- 53.
  • 4. Al-Akhras M.A., Grossweiner L.I. Sensitization of photohemolysis by hypericin and Photofrin. J Photochem Photobiol B: Biol 1996; 34: 169-75.
  • 5. Khalili M, Grossweiner L.I. Sensitization of photohemolysis by benzoporphyrin derivative monoacid ring A and porphyrins. J Photochem Photobiol B: Biol 1997; 37: 236-44.
  • 6. Bilgin M.D.,Al-Akhras M.A., Khalili M., Hemmati H., Grossweiner L.I. Photosensitization of red blood cell hemolysis by lutetium texaphyrin. Photochem Photobiol 2000; 72: 121-27.
  • 7. Valenzeno D.P., Pooler J.P. The concentration and fluence dependence of delayed photohemolysis. Photochem Photobiol 1982; 35: 427-29.
  • 8. Frolov A.A., Gurinovich G.P. The laws of delayed photohaemolysis sensitized by chlorin e . J Photochem Photobiol B: Biol 1992; 13: 39-50.
  • 9. Davson H., Ponder E. Photodynamically induced cation permeability and its relation to hemolysis. J cell Comp Physiol 1940; 15: 67-74.,
  • 10. Pooler J.P. The kinetics of colloid osmotic hemolysis. Photohemolysis. Biochim Biophys Acta 1985; 812: 199-205.
  • 11. Valenzeno D.P. Photohemolytic le sion s: Stoichiometry of creation by phloxine B. Photochem Photobiol 1981; 40: 681-689.
  • 12. Potapenko A. Y. Mechanisms of photodynamic effects of furocoumarins. J Photochem Photobiol B:Biol 1991; 9: 1-7.
  • 13. Lagerberg J.W.M., Williams M., Moor A.C.E. ve ark. The influence of merocyanibe 540 and protoporfirin on physicochemical properties of erythrocyte membrane 1996; 1278: 247-53.

Kinetic Model of Photosensitized Homolysis of Erythrocytes: Multihit Target Theory

Year 2004, Volume: 5 Issue: 3, 5 - 9, 01.12.2004

Abstract

Aim: By using rate kinetics of photosensitized hemolysis of erythrocyte as a model system, understanding themechanism of photosensitization on the cell membrane was purposed in this work. Photohemolysis required the combined effect of the light activated (photochemical stage) and thermal (thermal stage) process, and these stages can be represented by “Multihit Target Theory”, defined with photochemical and thermal hit numbers. Method: Photohemolysis rate was calculated by using 1/t = g Lk C j where t is the dark incubation time required for 50% hemolysis, L is the incident light dose, Cs is the bound dye concentration, j and k are the “as measured” exponents, and g is the reaction constant. Erythrocyte suspension, which was prepared in pH 7.4 10 mM phosphate buffered saline, was photosensitized with various concentration of protoporphyrin IX and was irradiated by visible light. Then, delayed photohemolysis was measured for each sample, and data were analyzed using “Multihit Target Theory”. Results: Prolonged  t50    values  were  measured  on  delayed  photohemolysis  curve  (s-shaped)  with  lowprotoporphyrin IX concentration and irradiation time. Delayed photohemolysis measurements are indicative of second power dependence of the photohemolysis rate on the absorbed light energy. Photohemolysis data obtained from experiments and kinetic model calculations were in good agreement. Conclusion: “Multihit Target Theory” is important for characterizing and comparing photohemolysis results. The effects of various concentrations of photosensitizers and light doses on photohemolysis curve were analyzed with kinetic model. Thus, experimental data were in good agreement with recent kinetic model, based on “Multihit Target Theory”.

References

  • 1. Bil gi n M.D. Bi ome dical a p plicati o n o f photosensitizer. Illinois Institute of Technology, Chicago IL,ABD, Doktora tezi, 1999.
  • 2. Grossweiner L.I., Fernandez J.M., Bilgin M.D. Photosensitization of red blood cell haemolysis by photodynamic agents. Lasers Med Sci 1998; 13: 42-54.
  • 3. Ben-Hur E.A., Orenstein A., Livne A., Rosenthal I. Photosensitized oxidation of human red blood cells: Cation effects on volume changes and relevance to blood vessel occlusion. Lasers Life Scis 1990; 3: 245- 53.
  • 4. Al-Akhras M.A., Grossweiner L.I. Sensitization of photohemolysis by hypericin and Photofrin. J Photochem Photobiol B: Biol 1996; 34: 169-75.
  • 5. Khalili M, Grossweiner L.I. Sensitization of photohemolysis by benzoporphyrin derivative monoacid ring A and porphyrins. J Photochem Photobiol B: Biol 1997; 37: 236-44.
  • 6. Bilgin M.D.,Al-Akhras M.A., Khalili M., Hemmati H., Grossweiner L.I. Photosensitization of red blood cell hemolysis by lutetium texaphyrin. Photochem Photobiol 2000; 72: 121-27.
  • 7. Valenzeno D.P., Pooler J.P. The concentration and fluence dependence of delayed photohemolysis. Photochem Photobiol 1982; 35: 427-29.
  • 8. Frolov A.A., Gurinovich G.P. The laws of delayed photohaemolysis sensitized by chlorin e . J Photochem Photobiol B: Biol 1992; 13: 39-50.
  • 9. Davson H., Ponder E. Photodynamically induced cation permeability and its relation to hemolysis. J cell Comp Physiol 1940; 15: 67-74.,
  • 10. Pooler J.P. The kinetics of colloid osmotic hemolysis. Photohemolysis. Biochim Biophys Acta 1985; 812: 199-205.
  • 11. Valenzeno D.P. Photohemolytic le sion s: Stoichiometry of creation by phloxine B. Photochem Photobiol 1981; 40: 681-689.
  • 12. Potapenko A. Y. Mechanisms of photodynamic effects of furocoumarins. J Photochem Photobiol B:Biol 1991; 9: 1-7.
  • 13. Lagerberg J.W.M., Williams M., Moor A.C.E. ve ark. The influence of merocyanibe 540 and protoporfirin on physicochemical properties of erythrocyte membrane 1996; 1278: 247-53.
There are 13 citations in total.

Details

Other ID JA44YA33NR
Journal Section Research Article
Authors

Mehmet Dinçer Bilgin This is me

A. Eser Elçin This is me

Publication Date December 1, 2004
Published in Issue Year 2004 Volume: 5 Issue: 3

Cite

EndNote Bilgin MD, Elçin AE (December 1, 2004) Kinetic Model of Photosensitized Homolysis of Erythrocytes: Multihit Target Theory. Meandros Medical And Dental Journal 5 3 5–9.