Research Article
BibTex RIS Cite
Year 2024, Volume: 25 Issue: 2, 154 - 168
https://doi.org/10.69601/meandrosmdj.1496245

Abstract

Project Number

This work was supported by the Adnan Menderes University Research Fund (Project No: DHF-21005).

References

  • 1. McNamara JA. Maxillary transverse deficiency. Am J Orthod Dentofacial Orthop 2000; 117(5): 567-70.
  • 2. Haas AJ. The Treatment of Maxillary Deficiency by Opening the Midpalatal Suture. Angle Orthod 1965; 35: 200-17.
  • 3. Sandikcioglu M, Hazar S. Skeletal and dental changes after maxillary expansion in the mixed dentition. Am J Orthod Dentofacial Orthop 1997; 111(3): 321-7.
  • 4. Jonsson T, Arnlaugsson S, Karlsson KO, Ragnarsson B, Arnarson EO, Magnusson TE. Orthodontic treatment experience and prevalence of malocclusion traits in an Icelandic adult population. Am J Orthod Dentofacial Orthop 2007; 131(1): 8.e11-8.
  • 5. Kutin G, Hawes RR. Posterior cross-bites in the deciduous and mixed dentitions. Am J Orthod 1969; 56(5): 491-504.
  • 6. Timms DJ. A study of basal movement with rapid maxillary expansion. Am J Orthod 1980; 77(5): 500-7.
  • 7. Vardimon AD, Brosh T, Spiegler A, Lieberman M, Pitaru S. Rapid palatal expansion: Part 1. Mineralization pattern of the midpalatal suture in cats. Am J Orthod Dentofacial Orthop 1998; 113(4): 371-8.
  • 8. Ekstrom C, Henrikson CO, Jensen R. Mineralization in the midpalatal suture after orthodontic expansion. Am J Orthod 1977; 71(4): 449-55.
  • 9. Baccetti T, Franchi L, Cameron CG, McNamara JA, Jr. Treatment timing for rapid maxillary expansion. Angle Orthod 2001; 71(5): 343-50.
  • 10. Lagravere MO, Major PW, Flores-Mir C. Long-term dental arch changes after rapid maxillary expansion treatment: a systematic review. Angle Orthod 2005; 75(2): 155-61.
  • 11. Ballanti F, Lione R, Fanucci E, Franchi L, Baccetti T, Cozza P. Immediate and post-retention effects of rapid maxillary expansion investigated by computed tomography in growing patients. Angle Orthod 2009; 79(1): 24-9.
  • 12. Kucukkeles N, Ceylanoglu C. Changes in lip, cheek, and tongue pressures after rapid maxillary expansion using a diaphragm pressure transducer. Angle Orthod 2003; 73(6): 662-8.
  • 13. Topal SC, Tuncer BB, Elgun S, Erguder I, Ozmeric N. Levels of Cytokines in Gingival Crevicular Fluid during Rapid Maxillary Expansion and the Subsequent Retention Period. J Clin Pediatr Dent 2019; 43(2): 137-43.
  • 14. Perinetti G, D'Apuzzo F, Contardo L, Primozic J, Rupel K, Perillo L. Gingival crevicular fluid alkaline phosphate activity during the retention phase of maxillary expansion in prepubertal subjects: A split-mouth longitudinal study. Am J Orthod Dentofacial Orthop 2015; 148(1): 90-6.
  • 15. Ozel N, Aksoy A, Kirzioglu FY, Doguc DK, Aksoy TA. Evaluation of interleukin-1beta level and oxidative status in gingival crevicular fluid during rapid maxillary expansion. Arch Oral Biol 2018; 90: 74-9.
  • 16. Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int Dent J 1975; 25(4): 229-35.
  • 17. Silness J, Loe H. Periodontal Disease in Pregnancy. Ii. Correlation between Oral Hygiene and Periodontal Condtion. Acta Odontol Scand 1964; 22: 121-35.
  • 18. Loe H, Silness J. Periodontal Disease in Pregnancy. I. Prevalence and Severity. Acta Odontol Scand 1963; 21: 533-51.
  • 19. Hefti A, Engelberger T, Buttner M. Gingivitis in Basel schoolchildren. SSO Schweiz Monatsschr Zahnheilkd 1981; 91(12): 1087-92.
  • 20. Rungcharassaeng K, Caruso JM, Kan JY, Kim J, Taylor G. Factors affecting buccal bone changes of maxillary posterior teeth after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 2007; 132(4): 428.e421-8.
  • 21. Griffiths GS, Moulson AM, Petrie A, James IT. Evaluation of osteocalcin and pyridinium crosslinks of bone collagen as markers of bone turnover in gingival crevicular fluid during different stages of orthodontic treatment. J Clin Periodontol 1998; 25(6): 492-8.
  • 22. Basaran G, Ozer T, Kaya FA, Hamamci O. Interleukins 2, 6, and 8 levels in human gingival sulcus during orthodontic treatment. Am J Orthod Dentofacial Orthop 2006; 130(1): 7.e1-6.
  • 23. King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 1991; 12(6): 401-9.
  • 24. Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 2006; 85(8): 751-6.
  • 25. Yang G, Im HJ, Wang JH. Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 2005; 363: 166-72.
  • 26. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, et al. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 2003; 163(5): 2021-31.
  • 27. Wright HL, Makki FA, Moots RJ, Edwards SW. Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J Leukoc Biol 2017; 101(2): 599-611.
  • 28. Okunnu BM, Berg RE. Neutrophils Are More Effective than Monocytes at Phagosomal Containment and Killing of Listeria monocytogenes. Immunohorizons 2019; 3(12): 573-84.
  • 29. Kojima T, Yamaguchi M, Yoshino T, Shimizu M, Yamada K, Goseki T, et al. TNF- α and RANKL facilitates the development of orthodontically-induced inflammatory root resorption. Open J Stomatol 2013; 03: 52-8.
  • 30. Tang Z, Mi D, Wu H, et al. Changes in Matrix Metalloproteinase-8, Interleukin-6 and Tumor Necrosis Factor-A in Gingival Crevicular Fluid during Rapid Maxillary Expansion in Adolescent Patients. Iran J Public Health 2021; 50(10): 1944-52.

Investigation of bone remodeling in gingival crevicular fluid in patients treated with rapid maxillary expansion during pubertal period

Year 2024, Volume: 25 Issue: 2, 154 - 168
https://doi.org/10.69601/meandrosmdj.1496245

Abstract

Purpose: We aimed to evaluate bone remodeling following 3-month and 6-month retention periods of rapid maxillary expansion (RME) in gingival crevicular fluid (GCF).
Materials and Methods: 23 pubertal participants (15 girls- 8 boys, 12-15 years) with maxillary transversal deficiency were enrolled in the study. Following banded-type RME appliance was introduced into the mouth, RME protocol was initiated by turning the Hyrax screw twice daily (morning/evening) with ¼ activation. GCF samples were taken from right maxillary first molars at four different time points (T0: before the appliance was deployed, T1: following active phase, T2: at the end of the 3-month retention period, T3: at the end of the 6-month retention period) using paper strips. Probing depth, gingival index, plaque index, and bleeding percentage at probing were recorded. BALP, OPG, RANKL, and TNF-α levels were measured in GCF samples using ELISA kits.
Results: Our study revealed that GCF's BALP and OPG levels remained unchanged over time in tension and pressure regions, and there were no statistically significant differences among regions at each time point (p>0.05). RANKL level was statistically significantly increased in the buccal region (the pressure region) at time T1 (p=0.042). The palatinal region's TNF-α level was statistically significantly higher than the buccal region at T0, T2, and T3 time points (p=0.005, p=0.042, and p=0.006, respectively). Our study showed no correlation between 3-month and 6-month retention periods and biomarkers indicating RME's bone metabolic activities.
Conclusions: Further studies with different retention periods and larger sample sizes are suggested.

Project Number

This work was supported by the Adnan Menderes University Research Fund (Project No: DHF-21005).

References

  • 1. McNamara JA. Maxillary transverse deficiency. Am J Orthod Dentofacial Orthop 2000; 117(5): 567-70.
  • 2. Haas AJ. The Treatment of Maxillary Deficiency by Opening the Midpalatal Suture. Angle Orthod 1965; 35: 200-17.
  • 3. Sandikcioglu M, Hazar S. Skeletal and dental changes after maxillary expansion in the mixed dentition. Am J Orthod Dentofacial Orthop 1997; 111(3): 321-7.
  • 4. Jonsson T, Arnlaugsson S, Karlsson KO, Ragnarsson B, Arnarson EO, Magnusson TE. Orthodontic treatment experience and prevalence of malocclusion traits in an Icelandic adult population. Am J Orthod Dentofacial Orthop 2007; 131(1): 8.e11-8.
  • 5. Kutin G, Hawes RR. Posterior cross-bites in the deciduous and mixed dentitions. Am J Orthod 1969; 56(5): 491-504.
  • 6. Timms DJ. A study of basal movement with rapid maxillary expansion. Am J Orthod 1980; 77(5): 500-7.
  • 7. Vardimon AD, Brosh T, Spiegler A, Lieberman M, Pitaru S. Rapid palatal expansion: Part 1. Mineralization pattern of the midpalatal suture in cats. Am J Orthod Dentofacial Orthop 1998; 113(4): 371-8.
  • 8. Ekstrom C, Henrikson CO, Jensen R. Mineralization in the midpalatal suture after orthodontic expansion. Am J Orthod 1977; 71(4): 449-55.
  • 9. Baccetti T, Franchi L, Cameron CG, McNamara JA, Jr. Treatment timing for rapid maxillary expansion. Angle Orthod 2001; 71(5): 343-50.
  • 10. Lagravere MO, Major PW, Flores-Mir C. Long-term dental arch changes after rapid maxillary expansion treatment: a systematic review. Angle Orthod 2005; 75(2): 155-61.
  • 11. Ballanti F, Lione R, Fanucci E, Franchi L, Baccetti T, Cozza P. Immediate and post-retention effects of rapid maxillary expansion investigated by computed tomography in growing patients. Angle Orthod 2009; 79(1): 24-9.
  • 12. Kucukkeles N, Ceylanoglu C. Changes in lip, cheek, and tongue pressures after rapid maxillary expansion using a diaphragm pressure transducer. Angle Orthod 2003; 73(6): 662-8.
  • 13. Topal SC, Tuncer BB, Elgun S, Erguder I, Ozmeric N. Levels of Cytokines in Gingival Crevicular Fluid during Rapid Maxillary Expansion and the Subsequent Retention Period. J Clin Pediatr Dent 2019; 43(2): 137-43.
  • 14. Perinetti G, D'Apuzzo F, Contardo L, Primozic J, Rupel K, Perillo L. Gingival crevicular fluid alkaline phosphate activity during the retention phase of maxillary expansion in prepubertal subjects: A split-mouth longitudinal study. Am J Orthod Dentofacial Orthop 2015; 148(1): 90-6.
  • 15. Ozel N, Aksoy A, Kirzioglu FY, Doguc DK, Aksoy TA. Evaluation of interleukin-1beta level and oxidative status in gingival crevicular fluid during rapid maxillary expansion. Arch Oral Biol 2018; 90: 74-9.
  • 16. Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int Dent J 1975; 25(4): 229-35.
  • 17. Silness J, Loe H. Periodontal Disease in Pregnancy. Ii. Correlation between Oral Hygiene and Periodontal Condtion. Acta Odontol Scand 1964; 22: 121-35.
  • 18. Loe H, Silness J. Periodontal Disease in Pregnancy. I. Prevalence and Severity. Acta Odontol Scand 1963; 21: 533-51.
  • 19. Hefti A, Engelberger T, Buttner M. Gingivitis in Basel schoolchildren. SSO Schweiz Monatsschr Zahnheilkd 1981; 91(12): 1087-92.
  • 20. Rungcharassaeng K, Caruso JM, Kan JY, Kim J, Taylor G. Factors affecting buccal bone changes of maxillary posterior teeth after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 2007; 132(4): 428.e421-8.
  • 21. Griffiths GS, Moulson AM, Petrie A, James IT. Evaluation of osteocalcin and pyridinium crosslinks of bone collagen as markers of bone turnover in gingival crevicular fluid during different stages of orthodontic treatment. J Clin Periodontol 1998; 25(6): 492-8.
  • 22. Basaran G, Ozer T, Kaya FA, Hamamci O. Interleukins 2, 6, and 8 levels in human gingival sulcus during orthodontic treatment. Am J Orthod Dentofacial Orthop 2006; 130(1): 7.e1-6.
  • 23. King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 1991; 12(6): 401-9.
  • 24. Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 2006; 85(8): 751-6.
  • 25. Yang G, Im HJ, Wang JH. Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 2005; 363: 166-72.
  • 26. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, et al. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 2003; 163(5): 2021-31.
  • 27. Wright HL, Makki FA, Moots RJ, Edwards SW. Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J Leukoc Biol 2017; 101(2): 599-611.
  • 28. Okunnu BM, Berg RE. Neutrophils Are More Effective than Monocytes at Phagosomal Containment and Killing of Listeria monocytogenes. Immunohorizons 2019; 3(12): 573-84.
  • 29. Kojima T, Yamaguchi M, Yoshino T, Shimizu M, Yamada K, Goseki T, et al. TNF- α and RANKL facilitates the development of orthodontically-induced inflammatory root resorption. Open J Stomatol 2013; 03: 52-8.
  • 30. Tang Z, Mi D, Wu H, et al. Changes in Matrix Metalloproteinase-8, Interleukin-6 and Tumor Necrosis Factor-A in Gingival Crevicular Fluid during Rapid Maxillary Expansion in Adolescent Patients. Iran J Public Health 2021; 50(10): 1944-52.
There are 30 citations in total.

Details

Primary Language English
Subjects Dentistry (Other)
Journal Section Research Article
Authors

Çimen Güran

Mine Geçgelen Cesur

Ayça Tuzcu

Project Number This work was supported by the Adnan Menderes University Research Fund (Project No: DHF-21005).
Early Pub Date August 28, 2024
Publication Date
Submission Date June 5, 2024
Acceptance Date August 8, 2024
Published in Issue Year 2024 Volume: 25 Issue: 2

Cite

EndNote Güran Ç, Geçgelen Cesur M, Tuzcu A (August 1, 2024) Investigation of bone remodeling in gingival crevicular fluid in patients treated with rapid maxillary expansion during pubertal period. Meandros Medical And Dental Journal 25 2 154–168.