Research Article
BibTex RIS Cite

KOLAJENAZ UYGULAMA SÜRESİNİN PRİMER MEME KANSERİ HÜCRE PROTEOMUNA ETKİLERİ

Year 2024, Volume: 25 Issue: 3, 222 - 232, 30.09.2024
https://doi.org/10.69601/meandrosmdj.1542417

Abstract

Amaç: Hücrelerin davranış mekanizmaları ve hastalıkların mekanizmalarını incelemek için kritik öneme sahip olan primer hücre izolasyonu metodunda kollajenaz aracılı doku ayrıştırması kritik bir rol oynamaktadır. Ancak, kollajenaz enziminin uygulama süresinin primer hücrelerin proteomuna, özellikle de meme kanseri araştırmalarında, etkisi yeterince araştırılmamıştır. Bu çalışma, kollajenaz II uygulama süresinin birincil meme kanseri hücrelerinin proteomik profilleri üzerindeki etkilerini araştırmayı amaçlamaktadır.
Materyal ve Metotlar: İnvaziv duktal karsinom teşhisi konmuş hastalardan alınan meme kanseri dokuları, kollajenaz II ile 1 saat ve 3 saat süreyle muamele edilmiştir. Sonrasında proteomik analiz, sıvı kromatografisi-tandem kütle spektrometrisi (LC-MS/MS) kullanılarak gerçekleştirilmiştir. Tanımlanan proteinler, farklı tedavi sürelerinin neden olduğu proteomik değişikliklerin işlevsel etkilerini belirlemek için biyoinformatik analizlere tabi tutulmuştur.
Sonuçlar: Biyoinformatik analizler, 1 saatlik uygulamanın öncelikli olarak hücre iskeleti organizasyonu ve hücre yapışmasıyla ilgili proteinleri etkilediğini ve aktin hücre iskeleti dinamikleri ile yapısal molekül aktivitelerinde belirgin zenginleşme olduğunu göstermiştir. Buna karşılık, 3 saatlik tedavi önemli metabolik yeniden programlamalara yol açmış ve enerji üretimi ile ilgili yolların, özellikle TCA döngüsü ve glikoliz, düzenlenmesini artırmıştır.
Sonuç: Bu çalışma, kollajenaz II tedavi süresinin, birincil meme kanseri hücrelerinin proteomik profilini önemli ölçüde değiştirdiğini ve daha kısa sürelerin yapısal proteinleri, daha uzun sürelerin ise metabolik değişiklikleri indüklediğini ilk kez ortaya koymaktadır. Bu sebeple, hedefli proteomik çalışmalar için tedavi süresinin optimize edilmesi oldukça önemlidir.

References

  • 1 . Hudu SA, Alshrari AS, Syahida A, Sekawi Z. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases. J Clin Diagn Res : JCDR. 2015;10(3):DE01-5.
  • 2. Miserocchi G, Mercatali L, Liverani C, Vita AD, Spadazzi C, Pieri F, et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med. 2017;15(1):229.
  • 3. Tanaka K, Okitsu T, Teramura N, Iijima K, Hayashida O, Teramae H, et al. Recombinant collagenase from Grimontia hollisae as a tissue dissociation enzyme for isolating primary cells. Sci Rep. 2020;10(1):3927.
  • 4. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzym Inhib Med Chem. 2016;31(sup1):177–83.
  • 5. Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, et al. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc Natl Acad Sci. 2012;109(31):12461–6.
  • 6. Deng SJ, Bickett DM, Mitchell JL, Lambert MH, Blackburn RK, Carter HL, et al. Substrate Specificity of Human Collagenase 3 Assessed Using a Phage-displayed Peptide Library*. J Biol Chem. 2000;275(40):31422–7.
  • 7. Alipour H, Raz A, Zakeri S, Djadid ND. Therapeutic applications of collagenase (metalloproteases): A review. Asian Pac J Trop Biomed. 2016;6(11):975–81.
  • 8. Breite AG, McCarthy RC, Dwulet FE. Characterization and Functional Assessment of Clostridium Histolyticum Class I (C1) Collagenases and the Synergistic Degradation of Native Collagen in Enzyme Mixtures Containing Class II (C2) Collagenase. Transplant Proc. 2011;43(9):3171–5.
  • 9. Tryggvason K, Huhtala P, Tuuttila A, Chow L, Keski-Oja J, Lohi J. Structure and expression of type IV collagenase genes. Cell Differ Dev. 1990;32(3):307–12.
  • 10. Lee SML, Schelcher C, Demmel M, Hauner M, Thasler WE. Isolation of Human Hepatocytes by a Two-step Collagenase Perfusion Procedure. J Vis Exp. 2013;(79).
  • 11. LeCluyse EL, Alexandre E, Hamilton GA, Viollon-Abadie C, Coon DJ, Jolley S, et al. Isolation and culture of primary human hepatocytes. Methods Mol Biol (Clifton, NJ). 2004;290:207–29.
  • 12. Gramignoli R, Green ML, Tahan V, Dorko K, Skvorak KJ, Marongiu F, et al. Development and Application of Purified Tissue Dissociation Enzyme Mixtures for Human Hepatocyte Isolation. Cell Transplant. 2012;21(6):1245–60.
  • 13. Sreejit P, Kumar S, Verma RS. An improved protocol for primary culture of cardiomyocyte from neonatal mice. Vitr Cell Dev Biol - Anim. 2008;44(3):45–50.
  • 14. Santos FAA dos, Carvalho CL, Almeida I, Fagulha T, Rammos F, Barros SC, et al. Simple Method for Establishing Primary Leporidae Skin Fibroblast Cultures. Cells. 2021;10(8):2100.
  • 15. Minafra L, Norata R, Bravatà V, Viola M, Lupo C, Gelfi C, et al. Unmasking epithelial-mesenchymal transition in a breast cancer primary culture: a study report. BMC Res Notes. 2012;5(1):343.
  • 16. Albayrak MGB, Simsek T, Kasap M, Akpinar G, Canturk NZ, Guler SA. Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis. Méd Oncol. 2022;39(12):238.
  • 17. Yanar S, Sarihan M, Kasap M, Akpinar G, Teke K, Bayrak BY. GFP Transfection Alters Protein Expression Patterns in Prostate Cancer Cells: A Proteomic Study. J Fluoresc. 2024;1–13.
  • 18. Oseni AO, Butler PE, Seifalian AM. Optimization of chondrocyte isolation and characterization for large-scale cartilage tissue engineering. J Surg Res. 2013;181(1):41–8.
  • 19. Quatromoni JG, Singhal S, Bhojnagarwala P, Hancock WW, Albelda SM, Eruslanov E. An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. J Leucoc Biol. 2014;97(1):201–9.
  • 20. Kristó I, Bajusz I, Bajusz C, Borkúti P, Vilmos P. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 2016;145(4):373–88.
  • 21. Geiger B, Yamada KM. Molecular Architecture and Function of Matrix Adhesions. Cold Spring Harb Perspect Biol. 2011;3(5):a005033.
  • 22. Hoon JL, Tan MH, Koh CG. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells. 2016;5(2):17.
  • 23. Jia D, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, et al. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci. 2019;116(9):3909–18.
  • 24. Cardaci S, Ciriolo MR. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State. Int J Cell Biol. 2012;2012:161837.

DECIPHERING THE IMPACT OF COLLAGENASE TREATMENT DURATION ON PRIMARY BREAST CANCER CELL PROTEOME: A COMPREHENSIVE STUDY

Year 2024, Volume: 25 Issue: 3, 222 - 232, 30.09.2024
https://doi.org/10.69601/meandrosmdj.1542417

Abstract

Aim: Primary cell isolation is essential for studying cellular behavior and disease mechanisms, with collagenase-mediated tissue dissociation playing a critical role in the process. However, the impact of collagenase treatment duration on the proteome of primary cells, particularly in breast cancer research, remains underexplored. This study aims to investigate the effects of collagenase II treatment duration on the proteomic profiles of primary breast cancer cells.
Materials and Methods: Breast cancer tissues from patients diagnosed with infiltrating ductal carcinoma were treated with collagenase II for either 1 or 3 hours. Subsequent proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identified proteins were subjected to bioinformatic analyses to determine the functional implications of the proteomic changes induced by the different treatment durations.
Results: Bioinformatic analyses showed that 1-hour treatment predominantly affected proteins involved in cytoskeletal organization and cell adhesion, with significant enrichment in actin cytoskeleton dynamics and structural molecule activity. In contrast, 3-hour treatment led to significant metabolic reprogramming, with enhanced regulation of pathways involved in energy production, including the TCA cycle and glycolysis.
Conclusion: This study reveals for the first time that, collagenase II treatment duration significantly alters the proteomic profile of primary breast cancer cells, with shorter durations affecting structural proteins and longer durations inducing metabolic changes. Optimizing treatment time is crucial for targeted proteomic studies.

Ethical Statement

This study has been approved by the Ethics Committee of Kocaeli University with approval number; KU GOKAEK-2019/16.04 2019/139.

Supporting Institution

Not applicable

References

  • 1 . Hudu SA, Alshrari AS, Syahida A, Sekawi Z. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases. J Clin Diagn Res : JCDR. 2015;10(3):DE01-5.
  • 2. Miserocchi G, Mercatali L, Liverani C, Vita AD, Spadazzi C, Pieri F, et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med. 2017;15(1):229.
  • 3. Tanaka K, Okitsu T, Teramura N, Iijima K, Hayashida O, Teramae H, et al. Recombinant collagenase from Grimontia hollisae as a tissue dissociation enzyme for isolating primary cells. Sci Rep. 2020;10(1):3927.
  • 4. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzym Inhib Med Chem. 2016;31(sup1):177–83.
  • 5. Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, et al. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc Natl Acad Sci. 2012;109(31):12461–6.
  • 6. Deng SJ, Bickett DM, Mitchell JL, Lambert MH, Blackburn RK, Carter HL, et al. Substrate Specificity of Human Collagenase 3 Assessed Using a Phage-displayed Peptide Library*. J Biol Chem. 2000;275(40):31422–7.
  • 7. Alipour H, Raz A, Zakeri S, Djadid ND. Therapeutic applications of collagenase (metalloproteases): A review. Asian Pac J Trop Biomed. 2016;6(11):975–81.
  • 8. Breite AG, McCarthy RC, Dwulet FE. Characterization and Functional Assessment of Clostridium Histolyticum Class I (C1) Collagenases and the Synergistic Degradation of Native Collagen in Enzyme Mixtures Containing Class II (C2) Collagenase. Transplant Proc. 2011;43(9):3171–5.
  • 9. Tryggvason K, Huhtala P, Tuuttila A, Chow L, Keski-Oja J, Lohi J. Structure and expression of type IV collagenase genes. Cell Differ Dev. 1990;32(3):307–12.
  • 10. Lee SML, Schelcher C, Demmel M, Hauner M, Thasler WE. Isolation of Human Hepatocytes by a Two-step Collagenase Perfusion Procedure. J Vis Exp. 2013;(79).
  • 11. LeCluyse EL, Alexandre E, Hamilton GA, Viollon-Abadie C, Coon DJ, Jolley S, et al. Isolation and culture of primary human hepatocytes. Methods Mol Biol (Clifton, NJ). 2004;290:207–29.
  • 12. Gramignoli R, Green ML, Tahan V, Dorko K, Skvorak KJ, Marongiu F, et al. Development and Application of Purified Tissue Dissociation Enzyme Mixtures for Human Hepatocyte Isolation. Cell Transplant. 2012;21(6):1245–60.
  • 13. Sreejit P, Kumar S, Verma RS. An improved protocol for primary culture of cardiomyocyte from neonatal mice. Vitr Cell Dev Biol - Anim. 2008;44(3):45–50.
  • 14. Santos FAA dos, Carvalho CL, Almeida I, Fagulha T, Rammos F, Barros SC, et al. Simple Method for Establishing Primary Leporidae Skin Fibroblast Cultures. Cells. 2021;10(8):2100.
  • 15. Minafra L, Norata R, Bravatà V, Viola M, Lupo C, Gelfi C, et al. Unmasking epithelial-mesenchymal transition in a breast cancer primary culture: a study report. BMC Res Notes. 2012;5(1):343.
  • 16. Albayrak MGB, Simsek T, Kasap M, Akpinar G, Canturk NZ, Guler SA. Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis. Méd Oncol. 2022;39(12):238.
  • 17. Yanar S, Sarihan M, Kasap M, Akpinar G, Teke K, Bayrak BY. GFP Transfection Alters Protein Expression Patterns in Prostate Cancer Cells: A Proteomic Study. J Fluoresc. 2024;1–13.
  • 18. Oseni AO, Butler PE, Seifalian AM. Optimization of chondrocyte isolation and characterization for large-scale cartilage tissue engineering. J Surg Res. 2013;181(1):41–8.
  • 19. Quatromoni JG, Singhal S, Bhojnagarwala P, Hancock WW, Albelda SM, Eruslanov E. An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. J Leucoc Biol. 2014;97(1):201–9.
  • 20. Kristó I, Bajusz I, Bajusz C, Borkúti P, Vilmos P. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 2016;145(4):373–88.
  • 21. Geiger B, Yamada KM. Molecular Architecture and Function of Matrix Adhesions. Cold Spring Harb Perspect Biol. 2011;3(5):a005033.
  • 22. Hoon JL, Tan MH, Koh CG. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells. 2016;5(2):17.
  • 23. Jia D, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, et al. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci. 2019;116(9):3909–18.
  • 24. Cardaci S, Ciriolo MR. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State. Int J Cell Biol. 2012;2012:161837.
There are 24 citations in total.

Details

Primary Language English
Subjects Cancer Biology
Journal Section Research Article
Authors

Merve Gulsen Bal Albayrak 0000-0003-2444-4258

Murat Kasap 0000-0001-8527-2096

Gürler Akpınar 0000-0002-9675-3714

Sevinc Yanar 0000-0002-6438-7385

Turgay Şimşek 0000-0002-5733-6301

Zafer Cantürk 0000-0002-0042-9742

Early Pub Date September 29, 2024
Publication Date September 30, 2024
Submission Date September 3, 2024
Acceptance Date September 26, 2024
Published in Issue Year 2024 Volume: 25 Issue: 3

Cite

EndNote Bal Albayrak MG, Kasap M, Akpınar G, Yanar S, Şimşek T, Cantürk Z (September 1, 2024) DECIPHERING THE IMPACT OF COLLAGENASE TREATMENT DURATION ON PRIMARY BREAST CANCER CELL PROTEOME: A COMPREHENSIVE STUDY. Meandros Medical And Dental Journal 25 3 222–232.