ÜÇLÜ NEGATİF MEME KANSERİ HÜCRELERİNDE TWIST1 TARAFINDAN FARKLI ŞEKİLDE DÜZENLENEN miRNA’LAR
Year 2024,
Volume: 25 Issue: 4, 396 - 411, 22.12.2024
Bahadir Ozturk
,
Akın Kol
,
Suray Pehlivanoğlu
,
Fatma Şengül Bağ
Abstract
Amaç: Meme kanseri (BC), kadınlarda en yaygın görülen kanser olup kanserle ilişkili ölümlerin en yaygın ikinci nedenidir. MikroRNA'lar (miRNA'lar), gen ekspresyonunu transkripsiyon sonrası düzeyde düzenleyen kısa, kodlayıcı olmayan RNA molekülleridir ve karsinogenez, kanser hücre proliferasyonu ve metastaz ile ilişkili gen ekspresyonunun bozulmasında merkezi bir rol oynarlar. Twist1, E-box motiflerine bağlanan ve hücresel mekanizmalarda belirleyici olan pozitif veya negatif bir düzenleyici olarak genlerin transkripsiyonel aktivitesini kontrol eden bir transkripsiyon faktörüdür. Bu bağlamda, Twist1 kanser ilerlemesi ile ilişkili miRNA'ların ekspresyonunu da düzenler. Bu çalışmada, üçlü negatif meme kanseri (TNBC) MDA-MB-231 hücrelerinde Twist1 tarafından doğrudan düzenlenen olası miRNA'ların ekspresyon değişikliklerini araştırmayı amaçladık.
Gereç ve Yöntemler: Bu çalışmada, üçlü negatif meme kanseri ile ilişkili olabileceği öngörülen toplam 43 miRNA geni değerlendirilmiştir. Twist1'e hedef olan miRNA genlerini belirlemek amacıyla, MDA-MB-231 TNBC hücrelerinde antisens oligonükleotidler aracılığıyla endojen yüksek düzeydeki Twist1 ekspresyonu baskılanmıştır. Twist1 baskılanmış hücrelerdeki farklı miRNA ekspresyon düzeyleri, kontrol grubu ile karşılaştırılarak kantitatif gerçek zamanlı PCR (qRT-PCR) analizi ile değerlendirilmiştir.
Bulgular: Twist1 baskılanması, miR-1-1 ve miR-210-3p ekspresyonunda artışa, miR-193b-3p, miR-181b-5p ve miR-148a-3p ekspresyonunda ise azalmaya neden olmuştur.
Sonuç: Bu çalışma, invazyon, metastaz ve apoptoz ile ilişkili belirli miRNA’ların ekspresyon düzeylerinin, üçlü negatif meme kanseri hücrelerinde Twist1 tarafından kontrol edildiğini göstermektedir.
References
- 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71(3):209-49.
- 2. McCarthy AM, Friebel-Klingner T, Ehsan S, He W, Welch M, Chen J, et al. Relationship of established risk factors with breast cancer subtypes. Cancer Med. 2021;10(18):6456-67.
- 3. Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget. 2017;8(1):1913-24.
- 4. Zhang B, Shetti D, Fan C, Wei K. miR-29b-3p promotes progression of MDA-MB-231 triple-negative breast cancer cells through downregulating TRAF3. Biol Res. 2019;52(1):38.
- 5. Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, et al. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Current Issues in Molecular Biology. 2023;45(12):9500-25.
- 6. Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci. 2021;8:764025.
- 7. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology. 2018;9:402.
- 8. Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol. 2020;10:581007.
- 9. Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends in cell biology. 2015;25(3):137-47.
- 10. Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel). 2023;13(19).
- 11. Ji W, Sun B, Su C. Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel). 2017;8(1).
- 12. Zhang X, Wei C, Li J, Liu J, Qu J. MicroRNA-361-5p inhibits epithelial-to-mesenchymal transition of glioma cells through targeting Twist1. Oncol Rep. 2017;37(3):1849-56.
- 13. Xu Y, Qin L, Sun T, Wu H, He T, Yang Z, et al. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene. 2017;36(8):1157-66.
- 14. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3(3):71-85.
- 15. Dang K, Myers KA. The Role of Hypoxia-Induced miR-210 in Cancer Progression. International Journal of Molecular Sciences. 2015;16(3):6353-72.
- 16. Han C, Yu Z, Duan Z, Kan Q. Role of microRNA-1 in human cancer and its therapeutic potentials. Biomed Res Int. 2014;2014:428371.
- 17. Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR‐193: a new weapon against cancer. Journal of cellular physiology. 2019;234(10):16861-72.
- 18. Jordan-Alejandre E, Campos-Parra AD, Castro-López DL, Silva-Cázares MB. Potential miRNA Use as a Biomarker: From Breast Cancer Diagnosis to Metastasis. Cells. 2023;12(4).
- 19. Yu X, He T, Tong Z, Liao L, Huang S, Fakhouri WD, et al. Molecular mechanisms of TWIST1-regulated transcription in EMT and cancer metastasis. EMBO Rep. 2023;24(11):e56902.
- 20. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22(1):90-106.
- 21. Beck B, Lapouge G, Rorive S, Drogat B, Desaedelaere K, Delafaille S, et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell. 2015;16(1):67-79.
- 22. Jiang X, Guo D, Li W, Yu T, Zhou J, Gong J. Combination Twist1 and CA15-3 in axillary lymph nodes for breast cancer prognosis. Mol Med Rep. 2017;15(3):1123-34.
- 23. Zhao Z, Rahman MA, Chen ZG, Shin DM. Multiple biological functions of Twist1 in various cancers. Oncotarget. 2017;8(12):20380-93.
- 24. Fattahi F, Saeednejad Zanjani L, Vafaei S, Habibi Shams Z, Kiani J, Naseri M, et al. Expressions of TWIST1 and CD105 markers in colorectal cancer patients and their association with metastatic potential and prognosis. Diagnostic Pathology. 2021;16(1):26.
- 25. Liang Y, Hu J, Li J, Liu Y, Yu J, Zhuang X, et al. Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits in Breast Cancer. Cancer Res. 2015;75(17):3672-80.
- 26. Li X, Xu F, Chang C, Byon J, Papayannopoulou T, Deeg HJ, Marcondes AM. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. haematologica. 2013;98(3):414.
- 27. Yu Y, Zhao Y, Sun X-H, Ge J, Zhang B, Wang X, Cao X-C. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer. Oncotarget. 2015;6(33):34423.
- 28. Li Q, Chen Z, Cao X, Xu J, Xu J, Chen Y, et al. Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells. Cell Death & Differentiation. 2011;18(1):16-25.
- 29. Nairismägi M-L, Füchtbauer A, Labouriau R, Bramsen JB, Füchtbauer E-M. The proto-oncogene TWIST1 is regulated by microRNAs. PLoS One. 2013;8(5):e66070.
- 30. Yeh TC, Huang TT, Yeh TS, Chen YR, Hsu KW, Yin PH, et al. miR-151-3p Targets TWIST1 to Repress Migration of Human Breast Cancer Cells. PLoS One. 2016;11(12):e0168171.
- 31. Yu J, Xie F, Bao X, Chen W, Xu Q. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer. Molecular cancer. 2014;13:1-12.
- 32. Li L-Z, Zhang CZ, Liu L-L, Yi C, Lu S-X, Zhou X, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis. 2014;35(2):469-78.
- 33. Yamasaki T, Yoshino H, Enokida H, Hidaka H, Chiyomaru T, Nohata N, et al. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. International Journal of Oncology. 2012;40(6):1821-30.
- 34. Liu R, Li J, Lai Y, Liao Y, Liu R, Qiu W. Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. International journal of biological macromolecules. 2015;81:491-7.
- 35. Minemura H, Takagi K, Miki Y, Shibahara Y, Nakagawa S, Ebata A, et al. Abnormal expression of miR-1 in breast carcinoma as a potent prognostic factor. Cancer Sci. 2015;106(11):1642-50.
- 36. Leone V, D'Angelo D, Rubio I, de Freitas PM, Federico A, Colamaio M, et al. MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1α. The Journal of Clinical Endocrinology & Metabolism. 2011;96(9):E1388-E98.
- 37. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214-20.
- 38. Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, et al. MicroRNA-1: Diverse role of a small player in multiple cancers. Seminars in Cell & Developmental Biology. 2022;124:114-26.
- 39. Yang Z, He M, Wang K, Sun G, Tang L, Xu Z. Tumor suppressive microRNA-193b promotes breast cancer progression via targeting DNAJC13 and RAB22A. International journal of clinical and experimental pathology. 2014;7(11):7563.
- 40. Leivonen S-K, Rokka A, Östling P, Kohonen P, Corthals GL, Kallioniemi O, Perälä M. Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Molecular & Cellular Proteomics. 2011;10(7).
- 41. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, et al. Mir193b–365 is essential for brown fat differentiation. Nature cell biology. 2011;13(8):958-65.
- 42. Pan D, Fujimoto M, Lopes A, Wang YX. Twist-1 is a PPARdelta-inducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism. Cell. 2009;137(1):73-86.
- 43. Hernandez YG, Lucas AL. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World journal of gastrointestinal oncology. 2016;8(1):18.
- 44. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Molecular cell. 2010;39(4):493-506.
- 45. Henao-Mejia J, Williams A, Goff LA, Staron M, Licona-Limón P, Kaech SM, et al. The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity. 2013;38(5):984-97.
- 46. Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. International journal of cancer. 2013;132(7):1602-12.
- 47. Yuan K, Lian Z, Sun B, Clayton MM, Ng IO, Feitelson MA. Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PloS one. 2012;7(4):e35331.
- 48. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. Journal of molecular cell biology. 2013;5(1):3-13.
- 49. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. The Journal of Immunology. 2010;185(12):7244-51.
- 50. Samaan S, Khella HW, Girgis A, Scorilas A, Lianidou E, Gabril M, et al. miR-210 is a prognostic marker in clear cell renal cell carcinoma. The Journal of Molecular Diagnostics. 2015;17(2):136-44.
- 51. Schild C, Trueb B. Aberrant expression of FGFRL1, a novel FGF receptor, in ovarian tumors. International journal of molecular medicine. 2005;16(6):1169-73.
- 52. Tsuchiya S, Fujiwara T, Sato F, Shimada Y, Tanaka E, Sakai Y, et al. MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). Journal of Biological Chemistry. 2011;286(1):420-8.
- 53. Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of biological chemistry. 2008;283(23):15878-83.
- 54. Yang W, Sun T, Cao J, Liu F, Tian Y, Zhu W. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Experimental cell research. 2012;318(8):944-54.
DIFFERENTIALLY REGULATED MIRNAS BY TWIST1 IN TRIPLE NEGATIVE BREAST CANCER CELLS
Year 2024,
Volume: 25 Issue: 4, 396 - 411, 22.12.2024
Bahadir Ozturk
,
Akın Kol
,
Suray Pehlivanoğlu
,
Fatma Şengül Bağ
Abstract
Objective: Breast cancer (BC) is the most common cancer in women and the second leading cause of cancer-related deaths. MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression post-transcriptionally and play a central role in the dysregulation of gene expression associated with carcinogenesis, cancer cell proliferation and metastasis. Twist1 is a transcription factor that binds to E-box motifs and controls the transcriptional activity of genes as a positive or negative regulator decisive in the cellular mechanisms. Accordingly, Twist1 also regulates the expression of miRNAs that are associated with cancer progression. In present study, we aimed to investigate the expressional changes of possible miRNAs directly regulated by Twist1 in triple negative breast cancer MDA-MB-231 cells.
Materials and Methods: In this study, a total of 43 miRNA genes were evaluated that predicted might be associated with triple negative breast cancer. To determine the Twist1-targeted miRNA genes, endogenous high level Twist1 expression was suppressed through the antisense oligonucleotides in MDA-MB-231 TNBC cells. Differential miRNA expression levels were analyzed by real time PCR analysis in Twist1-suppressed cells compare to control.
Results: Twist1 suppression leads to an increase in miR-1-1 and miR-210-3p expression, while a decrease in miR-193b-3p, miR-181b-5p, and miR-148a-3p expression.
Conclusion: This study shows that the expression levels of certain miRNAs linked to invasion, metastasis, and apoptosis are controlled by Twist1 in triple negative breast cancer cells.
Ethical Statement
This study protocol was reviewed and approved by Selcuk University Faculty of Medicine Ethics Committee, approval number 2024/113.
Supporting Institution
Funding for this study was provided by Selçuk University Scientific Research Projects Coordination Office, grant number 17202072.
Thanks
We would like to thank Selçuk University Scientific Research Projects Coordination Office.
References
- 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71(3):209-49.
- 2. McCarthy AM, Friebel-Klingner T, Ehsan S, He W, Welch M, Chen J, et al. Relationship of established risk factors with breast cancer subtypes. Cancer Med. 2021;10(18):6456-67.
- 3. Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget. 2017;8(1):1913-24.
- 4. Zhang B, Shetti D, Fan C, Wei K. miR-29b-3p promotes progression of MDA-MB-231 triple-negative breast cancer cells through downregulating TRAF3. Biol Res. 2019;52(1):38.
- 5. Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, et al. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Current Issues in Molecular Biology. 2023;45(12):9500-25.
- 6. Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci. 2021;8:764025.
- 7. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology. 2018;9:402.
- 8. Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol. 2020;10:581007.
- 9. Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends in cell biology. 2015;25(3):137-47.
- 10. Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel). 2023;13(19).
- 11. Ji W, Sun B, Su C. Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel). 2017;8(1).
- 12. Zhang X, Wei C, Li J, Liu J, Qu J. MicroRNA-361-5p inhibits epithelial-to-mesenchymal transition of glioma cells through targeting Twist1. Oncol Rep. 2017;37(3):1849-56.
- 13. Xu Y, Qin L, Sun T, Wu H, He T, Yang Z, et al. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene. 2017;36(8):1157-66.
- 14. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3(3):71-85.
- 15. Dang K, Myers KA. The Role of Hypoxia-Induced miR-210 in Cancer Progression. International Journal of Molecular Sciences. 2015;16(3):6353-72.
- 16. Han C, Yu Z, Duan Z, Kan Q. Role of microRNA-1 in human cancer and its therapeutic potentials. Biomed Res Int. 2014;2014:428371.
- 17. Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR‐193: a new weapon against cancer. Journal of cellular physiology. 2019;234(10):16861-72.
- 18. Jordan-Alejandre E, Campos-Parra AD, Castro-López DL, Silva-Cázares MB. Potential miRNA Use as a Biomarker: From Breast Cancer Diagnosis to Metastasis. Cells. 2023;12(4).
- 19. Yu X, He T, Tong Z, Liao L, Huang S, Fakhouri WD, et al. Molecular mechanisms of TWIST1-regulated transcription in EMT and cancer metastasis. EMBO Rep. 2023;24(11):e56902.
- 20. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22(1):90-106.
- 21. Beck B, Lapouge G, Rorive S, Drogat B, Desaedelaere K, Delafaille S, et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell. 2015;16(1):67-79.
- 22. Jiang X, Guo D, Li W, Yu T, Zhou J, Gong J. Combination Twist1 and CA15-3 in axillary lymph nodes for breast cancer prognosis. Mol Med Rep. 2017;15(3):1123-34.
- 23. Zhao Z, Rahman MA, Chen ZG, Shin DM. Multiple biological functions of Twist1 in various cancers. Oncotarget. 2017;8(12):20380-93.
- 24. Fattahi F, Saeednejad Zanjani L, Vafaei S, Habibi Shams Z, Kiani J, Naseri M, et al. Expressions of TWIST1 and CD105 markers in colorectal cancer patients and their association with metastatic potential and prognosis. Diagnostic Pathology. 2021;16(1):26.
- 25. Liang Y, Hu J, Li J, Liu Y, Yu J, Zhuang X, et al. Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits in Breast Cancer. Cancer Res. 2015;75(17):3672-80.
- 26. Li X, Xu F, Chang C, Byon J, Papayannopoulou T, Deeg HJ, Marcondes AM. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. haematologica. 2013;98(3):414.
- 27. Yu Y, Zhao Y, Sun X-H, Ge J, Zhang B, Wang X, Cao X-C. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer. Oncotarget. 2015;6(33):34423.
- 28. Li Q, Chen Z, Cao X, Xu J, Xu J, Chen Y, et al. Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells. Cell Death & Differentiation. 2011;18(1):16-25.
- 29. Nairismägi M-L, Füchtbauer A, Labouriau R, Bramsen JB, Füchtbauer E-M. The proto-oncogene TWIST1 is regulated by microRNAs. PLoS One. 2013;8(5):e66070.
- 30. Yeh TC, Huang TT, Yeh TS, Chen YR, Hsu KW, Yin PH, et al. miR-151-3p Targets TWIST1 to Repress Migration of Human Breast Cancer Cells. PLoS One. 2016;11(12):e0168171.
- 31. Yu J, Xie F, Bao X, Chen W, Xu Q. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer. Molecular cancer. 2014;13:1-12.
- 32. Li L-Z, Zhang CZ, Liu L-L, Yi C, Lu S-X, Zhou X, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis. 2014;35(2):469-78.
- 33. Yamasaki T, Yoshino H, Enokida H, Hidaka H, Chiyomaru T, Nohata N, et al. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. International Journal of Oncology. 2012;40(6):1821-30.
- 34. Liu R, Li J, Lai Y, Liao Y, Liu R, Qiu W. Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. International journal of biological macromolecules. 2015;81:491-7.
- 35. Minemura H, Takagi K, Miki Y, Shibahara Y, Nakagawa S, Ebata A, et al. Abnormal expression of miR-1 in breast carcinoma as a potent prognostic factor. Cancer Sci. 2015;106(11):1642-50.
- 36. Leone V, D'Angelo D, Rubio I, de Freitas PM, Federico A, Colamaio M, et al. MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1α. The Journal of Clinical Endocrinology & Metabolism. 2011;96(9):E1388-E98.
- 37. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214-20.
- 38. Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, et al. MicroRNA-1: Diverse role of a small player in multiple cancers. Seminars in Cell & Developmental Biology. 2022;124:114-26.
- 39. Yang Z, He M, Wang K, Sun G, Tang L, Xu Z. Tumor suppressive microRNA-193b promotes breast cancer progression via targeting DNAJC13 and RAB22A. International journal of clinical and experimental pathology. 2014;7(11):7563.
- 40. Leivonen S-K, Rokka A, Östling P, Kohonen P, Corthals GL, Kallioniemi O, Perälä M. Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Molecular & Cellular Proteomics. 2011;10(7).
- 41. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, et al. Mir193b–365 is essential for brown fat differentiation. Nature cell biology. 2011;13(8):958-65.
- 42. Pan D, Fujimoto M, Lopes A, Wang YX. Twist-1 is a PPARdelta-inducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism. Cell. 2009;137(1):73-86.
- 43. Hernandez YG, Lucas AL. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World journal of gastrointestinal oncology. 2016;8(1):18.
- 44. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Molecular cell. 2010;39(4):493-506.
- 45. Henao-Mejia J, Williams A, Goff LA, Staron M, Licona-Limón P, Kaech SM, et al. The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity. 2013;38(5):984-97.
- 46. Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. International journal of cancer. 2013;132(7):1602-12.
- 47. Yuan K, Lian Z, Sun B, Clayton MM, Ng IO, Feitelson MA. Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PloS one. 2012;7(4):e35331.
- 48. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. Journal of molecular cell biology. 2013;5(1):3-13.
- 49. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. The Journal of Immunology. 2010;185(12):7244-51.
- 50. Samaan S, Khella HW, Girgis A, Scorilas A, Lianidou E, Gabril M, et al. miR-210 is a prognostic marker in clear cell renal cell carcinoma. The Journal of Molecular Diagnostics. 2015;17(2):136-44.
- 51. Schild C, Trueb B. Aberrant expression of FGFRL1, a novel FGF receptor, in ovarian tumors. International journal of molecular medicine. 2005;16(6):1169-73.
- 52. Tsuchiya S, Fujiwara T, Sato F, Shimada Y, Tanaka E, Sakai Y, et al. MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). Journal of Biological Chemistry. 2011;286(1):420-8.
- 53. Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of biological chemistry. 2008;283(23):15878-83.
- 54. Yang W, Sun T, Cao J, Liu F, Tian Y, Zhu W. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Experimental cell research. 2012;318(8):944-54.