Research Article
BibTex RIS Cite

Detection of Staphylococcus Aureus by Aptamer-Gated MCM-41 Nanoparticles

Year 2025, Volume: 26 Issue: 1, 12 - 18, 20.03.2025
https://doi.org/10.69601/meandrosmdj.1591566

Abstract

Objective: With their excellent specificity, sensitivity, and speed of detection, aptamer-gated nanoparticles are a potential method for detecting Staphylococcus aureus. These techniques have been effectively used on a variety of actual samples, indicating their promise for real-world uses in environmental monitoring, clinical diagnostics, and food safety.
Materials and Methods: MCM-41 nanoparticles were characterized using DLS, SEM and FTIR techniques. Reference strains S. aureus, S. epidermidis, Escherichia coli were used. After the synthesis of fluorescence-loaded silica-coated MCM-41 nanoparticles, fluorescence release experiments were performed using dialysis membrane.
Results: The particle size of MCM-41 nanoparticles was determined to be 192±1.782 nm According to BET analysis, the MCM-41 particles had a specific surface area of 1019.37 m2/g, a pore size of 2.42 nm, and a pore volume of 0.99 cm3 g. It was determined that MCM-41 nanoparticles were nano-sized, had a narrow size distribution, and were smooth, amorphous and spherical in shape. MCM-41 nanoparticles were functionalized by amino groups via APTES reaction. FT-IR analysis was performed to determine the correct conjugation. Typical bands at 690 and 1460 nm, which correspond to N-H bending vibrations and N-H asymmetric bending vibrations, respectively, emerged following amino grafting. Fluorescein-loaded silica particles with conjugate aptamer and target bacteria S. aureus showed maximum release. In addition, It was determined that approximately 70% fluorescein release occurred in 6 hours. At detection limits as low as 164 CFU/mL in PBS, rapid and sensitive detection of S. aureus was obtained.
Conclusion: The proposed biosensor offers several advantages, including rapid response times, high sensitivity, and specificity for S. aureus detection. Future studies will probably concentrate on increasing the technologies' sensitivity, decreasing detection times, and broadening their range of applications.

References

  • 1. Liu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens 2024; 13(4): 276.
  • 2. Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health 2021; 18(14): 7602.
  • 3. Alves J, Vrieling M, Ring N, Yebra G, Pickering A, Prajsnar TK, Renshaw SA, Fitzgerald JR. Experimental evolution of Staphylococcus aureus in macrophages: dissection of a conditional adaptive trait promoting intracellular survival. mBio 2024; 15(6): e0034624.
  • 4. Kavanagh KT. Control of MSSA and MRSA in the United States: protocols, policies, risk adjustment and excuses. Antimicrob Resist Infect Control 2019; 8: 103.
  • 5. Qiu M, Zheng M, Zhang J, Yang X, Zhang Y, Zhang W, Man C, Zhao Q, Jiang Y. Recent advances on emerging biosensing technologies and on-site analytical devices for detection of drug-resistant foodborne pathogens. Trends Anal Chem 2023; 167: 117258.
  • 6. García-Uriostegui L, Meléndez-Ortiz HI, Mata-Padilla JM, Toriz G. Fast fabrication of mesostructured MCM-41-type nanoparticles by microwave-induced synthesis. Ceram Int 2023; 49: 28693-28701.
  • 7. Wei Y, Yang W, Yang Z. An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions. Int J Hydrogen Energy 2022; 47(16): 9537-9565
  • 8. Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous silica particles as drug delivery systems-the state of the art in loading methods and the recent progress in analytical techniques for monitoring these processes. Pharmaceutics 2021; 13(7): 950.
  • 9. Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci 2020; 21(23): 9123.
  • 10. Stoltenburg R, Reinemann C, Strehlitz B. Selex—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007; 24(4): 381-403.
  • 11. Mairal T, Özalp VC, Sánchez PL, Mir M, Katakis I, O’Sullivan CK. Aptamers: Molecular tools for analytical applications. Anal Bioanal Chem 2008; 390: 989-1007.
  • 12. Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol 2024; 8(6): 2300584.
  • 13. Anarjan FS. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct Nano-Objects 2019; 19: 100370.
  • 14. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N. Combining use of a panel of ssdna aptamers in the detection of staphylococcus aureus, Nucl Acids Res 2009; 37(14): 4621-4628.
  • 15. Borsa BA, Tuna BG, Hernandez FJ, Hernandez LI, Bayramoglu G, Arica MY, Ozalp VC. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron 2016; 86: 27-32.
  • 16. Ozalp VC, Eyidogan F, Oktem HA. Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 2011; 4(8): 1137-1157.
  • 17. Ozalp VC, Schäfer T. Aptamer‐based switchable nanovalves for stimuli‐responsive drug delivery. Chem Eur J 2011; 17(36): 9893-9896.
  • 18. Chen W, Lai Q, Zhang Y, Liu Z. Recent advances in aptasensors for rapid and sensitive detection of Staphylococcus aureus. Front Bioeng Biotechnol 2022; 10: 889431.
  • 19. Castillo RR, de la Torre L, García-Ochoa F, Ladero M, Vallet-Regí M. Production of MCM-41 nanoparticles with control of particle size and structural properties: optimizing operational conditions during scale-up. Int J Mol Sci 2020; 21(21): 7899.
  • 20. Jomekian A, Mansoori SAA, Monirimanesh N. Synthesis and characterization of novel PEO–MCM-41/PVDC nanocomposite membrane. Desalination, 2011; 276(1-3): 239-245.
  • 21. Dau TAN, Le VMH, Pham TKH, Le VH, Cho SK, Nguyen TNU TKH, Van Tran, TT. Surface functionalization of doxorubicin loaded MCM-41 mesoporous silica nanoparticles by 3-aminopropyltriethoxysilane for selective anticancer 9 effect on A549 and A549/DOX cells. J Electron Mater 2021; 50: 2932-2939.
  • 22. Khalil KMS. Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature. J Colloid Interface Sci 2007; 315(2): 562-568.
  • 23. Mishra S, Nguyen HQ, Huang QR, Lin CK, Kuo JL, Patwari GN. Vibrational spectroscopic signatures of hydrogen bond induced NH stretch–bend Fermi-resonance in amines: The methylamine clusters and other N–H⋯ N hydrogen-bonded complexes. J Chem Phys 2020; 153(19): 194301
  • 24. Ercan M, Ozalp VC, Tuna BG. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles. Anal Biochem 2017; 537: 78-83.
  • 25. Shangguan J, Li Y, He D, He X, Wang K, Zou Z, Shi H. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst, 2015; 140(13): 4489-4497.
  • 26. He X, Li Y, He D, Wang K, Shangguan J, Shi H. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol 2014; 10(7): 1359-1368.
  • 27. Zhu A, Jiao T, Ali S, Xu Y, Ouyang Q, Chen Q. SERS sensors based on aptamer-gated mesoporous silica nanoparticles for quantitative detection of Staphylococcus aureus with signal molecular release. Anal Chem 2021; 93(28): 9788-9796.
  • 28. Kavruk M, Celikbicak O, Ozalp VC, Borsa BA, Hernandez FJ, Bayramoglu G, Salih B, Arica MY. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chem comm 2015; 51(40): 8492-8495.
  • 29. Borsa BA, Tuna BG, Hernandez FJ, Hernandez LI, Bayramoglu G, Arica MY, Ozalp VC. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron 2016; 86: 27-32.
  • 30. Chen L, Leng YK, Liu B, Liu J, Wan SP, Wu T, Yuan J, Shao L, Gu G, Fu Y, Xu H, Xiong Y, He X, Wu Q. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode-no core-singlemode coupler for Staphylococcus aureus detection. Sens Actuators B Chem 2020; 320: 128283.
  • 31. He X, Li Y, He D, Wang K, Shangguan J, Shi H. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol 2014; 10(7): 1359-1368.
  • 32. Qiao J, Meng X, Sun Y, Li Q, Zhao R, Zhang Y, Wang J, Yi Z. Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J Microbiol Methods 2018; 153: 92-98.

Staphylococcus aureus'un Aptamer Kapılı MCM-41 Nanopartikülleri ile Tespiti

Year 2025, Volume: 26 Issue: 1, 12 - 18, 20.03.2025
https://doi.org/10.69601/meandrosmdj.1591566

Abstract

Amaç: Aptamer kapılı nanopartiküller, çok spesifik, hassas ve hızlı tespit edilebilmeleri nedeniyle Staphylococcus aureus tespiti için olası bir yoldur.
Gereç ve Yöntemler: MCM-41 nanopartikülleri, DLS, SEM ve FTIR teknikleri kullanılarak karakterize edilmiştir. Referans suşlar olarak S. aureus, S. epidermidis ve Escherichia coli kullanılmıştır. Floresan yüklü silika kaplı MCM-41 nanopartiküllerinin sentezinin ardından, floresan salım deneyleri diyaliz membranı kullanılarak gerçekleştirilmiştir.
Bulgular: MCM-41 nanopartiküllerinin partikül boyutu 192 ± 1.782 nm olarak belirlenmiştir. BET analizi, MCM-41 partiküllerinin 1019.37 m²/g’lik spesifik yüzey alanına, 2.42 nm genişliğinde gözeneklere ve 0.99 cm³/g’lik malzeme tutma kapasitesine sahip olduğunu göstermiştir. MCM-41 nanopartiküllerinin nano boyutta olduğu, dar bir boyut dağılımına sahip olduğu ve düzgün, amorf ve küresel bir yapıda olduğu belirlenmiştir. MCM-41 nanopartikülleri, APTES reaksiyonu ile amino grupları ile fonksiyonelleştirilmiştir. FT-IR analizi, doğru konjugasyonun gerçekleştiğini doğrulamak için yapılmıştır. Amino asitlerin eklenmesinden sonra 690 nm ve 1460 nm'de tipik bantlar gözlemlenmiştir. Bu bantlar sırasıyla N–H bükülme titreşimlerine ve N–H asimetrik bükülme titreşimlerine karşılık gelmektedir. Florescein yüklü silika partikülleri, aptamer ve hedef bakteri S. aureus ile konjuge edildiğinde maksimum salım gerçekleşmiştir. Ayrıca, yaklaşık %70 oranında fluorescein salımı 6 saat içinde gerçekleşmiştir. Bu yöntem ile S. aureus, 164 CFU/mL gibi düşük bir tespit sınırında, hızlı ve doğru bir şekilde tespit edilebilmiştir.
Sonuç: Önerilen biyosensör, hızlı yanıt süresi, yüksek hassasiyet ve S. aureus tespiti için yüksek özgüllük gibi birçok avantaja sahiptir. Gelecekteki çalışmalar, bu teknolojilerin hassasiyetini artırmaya, tespit süresini azaltmaya ve uygulama alanlarını genişletmeye odaklanacaktır.

References

  • 1. Liu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens 2024; 13(4): 276.
  • 2. Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health 2021; 18(14): 7602.
  • 3. Alves J, Vrieling M, Ring N, Yebra G, Pickering A, Prajsnar TK, Renshaw SA, Fitzgerald JR. Experimental evolution of Staphylococcus aureus in macrophages: dissection of a conditional adaptive trait promoting intracellular survival. mBio 2024; 15(6): e0034624.
  • 4. Kavanagh KT. Control of MSSA and MRSA in the United States: protocols, policies, risk adjustment and excuses. Antimicrob Resist Infect Control 2019; 8: 103.
  • 5. Qiu M, Zheng M, Zhang J, Yang X, Zhang Y, Zhang W, Man C, Zhao Q, Jiang Y. Recent advances on emerging biosensing technologies and on-site analytical devices for detection of drug-resistant foodborne pathogens. Trends Anal Chem 2023; 167: 117258.
  • 6. García-Uriostegui L, Meléndez-Ortiz HI, Mata-Padilla JM, Toriz G. Fast fabrication of mesostructured MCM-41-type nanoparticles by microwave-induced synthesis. Ceram Int 2023; 49: 28693-28701.
  • 7. Wei Y, Yang W, Yang Z. An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions. Int J Hydrogen Energy 2022; 47(16): 9537-9565
  • 8. Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous silica particles as drug delivery systems-the state of the art in loading methods and the recent progress in analytical techniques for monitoring these processes. Pharmaceutics 2021; 13(7): 950.
  • 9. Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci 2020; 21(23): 9123.
  • 10. Stoltenburg R, Reinemann C, Strehlitz B. Selex—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007; 24(4): 381-403.
  • 11. Mairal T, Özalp VC, Sánchez PL, Mir M, Katakis I, O’Sullivan CK. Aptamers: Molecular tools for analytical applications. Anal Bioanal Chem 2008; 390: 989-1007.
  • 12. Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol 2024; 8(6): 2300584.
  • 13. Anarjan FS. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct Nano-Objects 2019; 19: 100370.
  • 14. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N. Combining use of a panel of ssdna aptamers in the detection of staphylococcus aureus, Nucl Acids Res 2009; 37(14): 4621-4628.
  • 15. Borsa BA, Tuna BG, Hernandez FJ, Hernandez LI, Bayramoglu G, Arica MY, Ozalp VC. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron 2016; 86: 27-32.
  • 16. Ozalp VC, Eyidogan F, Oktem HA. Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 2011; 4(8): 1137-1157.
  • 17. Ozalp VC, Schäfer T. Aptamer‐based switchable nanovalves for stimuli‐responsive drug delivery. Chem Eur J 2011; 17(36): 9893-9896.
  • 18. Chen W, Lai Q, Zhang Y, Liu Z. Recent advances in aptasensors for rapid and sensitive detection of Staphylococcus aureus. Front Bioeng Biotechnol 2022; 10: 889431.
  • 19. Castillo RR, de la Torre L, García-Ochoa F, Ladero M, Vallet-Regí M. Production of MCM-41 nanoparticles with control of particle size and structural properties: optimizing operational conditions during scale-up. Int J Mol Sci 2020; 21(21): 7899.
  • 20. Jomekian A, Mansoori SAA, Monirimanesh N. Synthesis and characterization of novel PEO–MCM-41/PVDC nanocomposite membrane. Desalination, 2011; 276(1-3): 239-245.
  • 21. Dau TAN, Le VMH, Pham TKH, Le VH, Cho SK, Nguyen TNU TKH, Van Tran, TT. Surface functionalization of doxorubicin loaded MCM-41 mesoporous silica nanoparticles by 3-aminopropyltriethoxysilane for selective anticancer 9 effect on A549 and A549/DOX cells. J Electron Mater 2021; 50: 2932-2939.
  • 22. Khalil KMS. Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature. J Colloid Interface Sci 2007; 315(2): 562-568.
  • 23. Mishra S, Nguyen HQ, Huang QR, Lin CK, Kuo JL, Patwari GN. Vibrational spectroscopic signatures of hydrogen bond induced NH stretch–bend Fermi-resonance in amines: The methylamine clusters and other N–H⋯ N hydrogen-bonded complexes. J Chem Phys 2020; 153(19): 194301
  • 24. Ercan M, Ozalp VC, Tuna BG. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles. Anal Biochem 2017; 537: 78-83.
  • 25. Shangguan J, Li Y, He D, He X, Wang K, Zou Z, Shi H. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst, 2015; 140(13): 4489-4497.
  • 26. He X, Li Y, He D, Wang K, Shangguan J, Shi H. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol 2014; 10(7): 1359-1368.
  • 27. Zhu A, Jiao T, Ali S, Xu Y, Ouyang Q, Chen Q. SERS sensors based on aptamer-gated mesoporous silica nanoparticles for quantitative detection of Staphylococcus aureus with signal molecular release. Anal Chem 2021; 93(28): 9788-9796.
  • 28. Kavruk M, Celikbicak O, Ozalp VC, Borsa BA, Hernandez FJ, Bayramoglu G, Salih B, Arica MY. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chem comm 2015; 51(40): 8492-8495.
  • 29. Borsa BA, Tuna BG, Hernandez FJ, Hernandez LI, Bayramoglu G, Arica MY, Ozalp VC. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron 2016; 86: 27-32.
  • 30. Chen L, Leng YK, Liu B, Liu J, Wan SP, Wu T, Yuan J, Shao L, Gu G, Fu Y, Xu H, Xiong Y, He X, Wu Q. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode-no core-singlemode coupler for Staphylococcus aureus detection. Sens Actuators B Chem 2020; 320: 128283.
  • 31. He X, Li Y, He D, Wang K, Shangguan J, Shi H. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol 2014; 10(7): 1359-1368.
  • 32. Qiao J, Meng X, Sun Y, Li Q, Zhao R, Zhang Y, Wang J, Yi Z. Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J Microbiol Methods 2018; 153: 92-98.
There are 32 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Samet Uçak 0000-0002-3461-2481

Publication Date March 20, 2025
Submission Date November 26, 2024
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 26 Issue: 1

Cite

EndNote Uçak S (March 1, 2025) Detection of Staphylococcus Aureus by Aptamer-Gated MCM-41 Nanoparticles. Meandros Medical And Dental Journal 26 1 12–18.