Research Article
BibTex RIS Cite

All-On-4 Protetik Restorasyonlarda Farklı Altyapı Ve Üst Yapı Materyallerinin Kemikteki Stres Dağılımına Etkisi

Year 2025, Volume: 26 Issue: 1, 117 - 128, 20.03.2025
https://doi.org/10.69601/meandrosmdj.1603483

Abstract

Amaç: Bu çalışma, All-on-4 protez restorasyonlarında farklı altyapı ve üst yapı malzemelerinin, implant çevresi kemiğe yük dağılımını etkileyip etkilemediğini incelemeyi amaçlamıştır.
Materyaller ve Yöntemler: All-on-4 konsepti uyarınca dört implant yerleştirildi, distal implantlar 30 derece açıyla yerleştirildi. Altyapı malzemeleri (kobalt-krom alaşımı, titanyum, PEEK, zirkonya) ve üst yapı malzemeleri (kompozit, zirkonya) sekiz kombinasyon oluşturdu. Rhinoceros 4.0 (3670 Woodland Park Ave N, Seattle, WA 98103 USA) ve VRMesh (VirtualGrid Inc, Bellevue City, WA, USA) kullanılarak 3D modeller tasarlandı ve daha sonra sonlu elemanlar analizi için Algor Fempro'ya (ALGOR, Inc. 150 Beta Drive Pittsburgh, PA 15238-2932 USA) aktarıldı. 150N'luk bir kuvvet, sol birinci molar ve premoların oklüzal yüzeylerine dik olarak uygulandı.
Bulgular: PEEK altyapı grubunda, uygulanan kuvvetin yakınındaki kortikal kemikte en yüksek maksimum asal stres (HMaxPS) değerleri gözlendi. Zirkonya üst yapı grubunda, kompozit gruba göre daha düşük maksimum asal stres değerleri gözlendi. Minimum asal stres (MinPS), kompozit üst yapıda zirkonya üst yapıya göre daha düşüktü. Kantilever grubunda, kortikal kemikteki minimum asal stres (MinPS) tepe değerleri altyapıların elastik modülü ile ters orantılıydı: PEEK > titanyum > Cr-Co > zirkonya.
Sonuçlar: PEEK altyapı ve kompozit üst yapı gruplarında, implantları çevreleyen kortikal kemikte daha yüksek çekme kuvvetleri gözlendi. En yüksek baskı değerleri sırasıyla PEEK altyapıda, ardından titanyum, Cr-Co ve zirkonya'da gözlendi. Kompozit üst yapıda zirkonya üst yapıya kıyasla kortikal kemikte daha fazla stres birikimi gözlendi.

References

  • 1. Horita S, Sugiura T, Yamamoto K, Murakami K, Imai Y, Kirita T. Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept. J Prosthodont Res. 2017 Apr;61(2):123–32.
  • 2. Taruna M. Prosthodontic Perspective to All- On-4 ® Concept for Dental Implants. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. 2014;
  • 3. Babbush CA, Kutsko GT, Brokloff J. The All-on-Four immediate function treatment concept with nobelactive implants: A retrospective study. Vol. 37, Journal of Oral Implantology. 2011. p. 431–45.
  • 4. Bhering CLB, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RLX, Barão VAR. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:715–25.
  • 5. Kupprano P, Kamonkhantikul K, Homsiang W, Takahashi H, Arksornnukit M. Finite element analysis on implant-supported bar with different geometric shapes. BMC Oral Health. 2024 Dec 30;24(1):1572.
  • 6. Al Jabbari YS. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. J Adv Prosthodont. 2014 Apr;6(2):138–45.
  • 7. Dayan SC, Geckili O. The influence of framework material on stress distribution in maxillary complete-arch fixed prostheses supported by four dental implants: a three-dimensional finite element analysis. Comput Methods Biomech Biomed Engin. 2021 Nov;24(14):1606–17.
  • 8. Kelkar KC, Bhat V, Hegde C. Finite element analysis of the effect of framework materials at the bone-implant interface in the all-on-four implant system. Dent Res J (Isfahan). 2021;18:1.
  • 9. Jin HY, Teng MH, Wang ZJ, Li X, Liang JY, Wang WX, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. J Prosthet Dent. 2019 Oct;122(4):383–8.
  • 10. Takaba M, Tanaka S, Ishiura Y, Baba K. Implant-supported fixed dental prostheses with CAD/CAM-fabricated porcelain crown and zirconia-based framework. J Prosthodont. 2013 Jul;22(5):402–7.
  • 11. Jaros OAL, De Carvalho GAP, Franco ABG, Kreve S, Lopes PAB, Dias SC. Biomechanical Behavior of an Implant System Using Polyether Ether Ketone Bar: Finite Element Analysis. J Int Soc Prev Community Dent. 2018;8(5):446–50.
  • 12. Tribst JPM, de Morais DC, Alonso AA, Piva AM de OD, Borges ALS. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials. J Indian Prosthodont Soc. 2017;17(3):255–60.
  • 13. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012 Mar;8(3):1213–20.
  • 14. Maló P, de Araújo Nobre MA, Lopes A V, Rodrigues R. Immediate loading short implants inserted on low bone quantity for the rehabilitation of the edentulous maxilla using an All-on-4 design. J Oral Rehabil. 2015 Aug;42(8):615–23.
  • 15. Seemann R, Wagner F, Marincola M, Ewers R. Fixed, Fiber-Reinforced Resin Bridges on 5.0-mm Implants in Severely Atrophic Mandibles: Up to 5 Years’ Follow-Up of a Prospective Cohort Study. Journal of Oral and Maxillofacial Surgery. 2018 May;76(5):956–62.
  • 16. Wang J, Wu P, Liu HL, Zhang L, Liu LP, Ma CF, et al. Polyetheretherketone versus titanium CAD-CAM framework for implant-supported fixed complete dentures: a retrospective study with up to 5-year follow-up. J Prosthodont Res. 2022 Apr 27;66(2):279–87.
  • 17. Conserva E, Menini M, Tealdo T, Bevilacqua M, Ravera G, Pera F, et al. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for prosthetic implants: a preliminary report. Int J Prosthodont. 2009;22(1):53–5.
  • 18. Zoidis P. The all-on-4 modified polyetheretherketone treatment approach: A clinical report. J Prosthet Dent. 2018 Apr;119(4):516–21.
  • 19. Zhang G, Yuan H, Chen X, Wang W, Chen J, Liang J, et al. A Three-Dimensional Finite Element Study on the Biomechanical Simulation of Various Structured Dental Implants and Their Surrounding Bone Tissues. Int J Dent. 2016;2016:1–9.
  • 20. Pieri F, Aldini NN, Fini M, Corinaldesi G. Immediate Occlusal Loading of Immediately Placed Implants Supporting Fixed Restorations in Completely Edentulous Arches: A 1‐Year Prospective Pilot Study. J Periodontol. 2009 Mar;80(3):411–21.
  • 21. Sirandoni D, Leal E, Weber B, Noritomi PY, Fuentes R, Borie E. Effect of Different Framework Materials in Implant-Supported Fixed Mandibular Prostheses: A Finite Element Analysis. Int J Oral Maxillofac Implants. 2019;34(6):e107–14.
  • 22. Liu T, Mu Z, Yu T, Wang C, Huang Y. Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: a three-dimensional finite element analysis. Comput Methods Biomech Biomed Engin. 2019 May;22(6):585–94.
  • 23. Seemann R, Marincola M, Seay D, Perisanidis C, Barger N, Ewers R. Preliminary results of fixed, fiber-reinforced resin bridges on four 4- × 5-mm ultrashort implants in compromised bony sites: a pilot study. J Oral Maxillofac Surg. 2015 Apr;73(4):630–40.
  • 24. Bacchi A, Consani RLX, Mesquita MF, Dos Santos MBF. Effect of framework material and vertical misfit on stress distribution in implant-supported partial prosthesis under load application: 3-D finite element analysis. Acta Odontol Scand. 2013 Sep;71(5):1243–9.
  • 25. ÇALIŞKAN A, YÖNDEM İ. Stress Analysis Of Fixed Dental Prostheses Produced With Different Materials According To The All-On-Four Concept. Journal of Biotechnology and Strategic Health Research. 2019 Dec 31;3(3):183–91.

Impact of Different Substructure and Superstructure Materials on Bone Stress Distribution in All-on-4 Prosthetic Restorations

Year 2025, Volume: 26 Issue: 1, 117 - 128, 20.03.2025
https://doi.org/10.69601/meandrosmdj.1603483

Abstract

Aim: This study aimed to examine whether different framework and superstructure materials in All-on-4 prosthetic restorations affect load distribution in peri-implant bone.
Materials and Methods: Four implants were placed according to the All-on-4 concept, with distal implants angled at 30 degrees. Framework materials (cobalt-chromium alloy, titanium, PEEK, zirconia) and superstructure materials (composite, zirconia) created eight combinations. 3D models were designed using Rhinoceros 4.0 and VRMesh, then imported into Algor Fempro for finite element analysis. A 150N force was applied perpendicular to the occlusal surfaces of the left first molar and premolar.
Results: The PEEK framework group showed the highest maximum principal stress values in the cortical bone near the applied force. The zirconia superstructure group exhibited lower maximum principal stress values than the composite group. Minimum principal stress was lower in the composite superstructure compared to the zirconia superstructure. For the cantilever section, the peak minimum principal stress values in the cortical bone were inversely proportional to the elastic modulus of the frameworks: PEEK > titanium > Cr-Co > zirconia.
Conclusions: The PEEK framework and composite superstructure groups generated higher tensile forces in the cortical bone surrounding the implants. The highest compression values were observed in the PEEK framework, followed by titanium, Cr-Co, and zirconia. Greater stress accumulation was found in the cortical bone with the composite superstructure compared to the zirconia superstructure.

References

  • 1. Horita S, Sugiura T, Yamamoto K, Murakami K, Imai Y, Kirita T. Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept. J Prosthodont Res. 2017 Apr;61(2):123–32.
  • 2. Taruna M. Prosthodontic Perspective to All- On-4 ® Concept for Dental Implants. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. 2014;
  • 3. Babbush CA, Kutsko GT, Brokloff J. The All-on-Four immediate function treatment concept with nobelactive implants: A retrospective study. Vol. 37, Journal of Oral Implantology. 2011. p. 431–45.
  • 4. Bhering CLB, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RLX, Barão VAR. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:715–25.
  • 5. Kupprano P, Kamonkhantikul K, Homsiang W, Takahashi H, Arksornnukit M. Finite element analysis on implant-supported bar with different geometric shapes. BMC Oral Health. 2024 Dec 30;24(1):1572.
  • 6. Al Jabbari YS. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. J Adv Prosthodont. 2014 Apr;6(2):138–45.
  • 7. Dayan SC, Geckili O. The influence of framework material on stress distribution in maxillary complete-arch fixed prostheses supported by four dental implants: a three-dimensional finite element analysis. Comput Methods Biomech Biomed Engin. 2021 Nov;24(14):1606–17.
  • 8. Kelkar KC, Bhat V, Hegde C. Finite element analysis of the effect of framework materials at the bone-implant interface in the all-on-four implant system. Dent Res J (Isfahan). 2021;18:1.
  • 9. Jin HY, Teng MH, Wang ZJ, Li X, Liang JY, Wang WX, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. J Prosthet Dent. 2019 Oct;122(4):383–8.
  • 10. Takaba M, Tanaka S, Ishiura Y, Baba K. Implant-supported fixed dental prostheses with CAD/CAM-fabricated porcelain crown and zirconia-based framework. J Prosthodont. 2013 Jul;22(5):402–7.
  • 11. Jaros OAL, De Carvalho GAP, Franco ABG, Kreve S, Lopes PAB, Dias SC. Biomechanical Behavior of an Implant System Using Polyether Ether Ketone Bar: Finite Element Analysis. J Int Soc Prev Community Dent. 2018;8(5):446–50.
  • 12. Tribst JPM, de Morais DC, Alonso AA, Piva AM de OD, Borges ALS. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials. J Indian Prosthodont Soc. 2017;17(3):255–60.
  • 13. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012 Mar;8(3):1213–20.
  • 14. Maló P, de Araújo Nobre MA, Lopes A V, Rodrigues R. Immediate loading short implants inserted on low bone quantity for the rehabilitation of the edentulous maxilla using an All-on-4 design. J Oral Rehabil. 2015 Aug;42(8):615–23.
  • 15. Seemann R, Wagner F, Marincola M, Ewers R. Fixed, Fiber-Reinforced Resin Bridges on 5.0-mm Implants in Severely Atrophic Mandibles: Up to 5 Years’ Follow-Up of a Prospective Cohort Study. Journal of Oral and Maxillofacial Surgery. 2018 May;76(5):956–62.
  • 16. Wang J, Wu P, Liu HL, Zhang L, Liu LP, Ma CF, et al. Polyetheretherketone versus titanium CAD-CAM framework for implant-supported fixed complete dentures: a retrospective study with up to 5-year follow-up. J Prosthodont Res. 2022 Apr 27;66(2):279–87.
  • 17. Conserva E, Menini M, Tealdo T, Bevilacqua M, Ravera G, Pera F, et al. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for prosthetic implants: a preliminary report. Int J Prosthodont. 2009;22(1):53–5.
  • 18. Zoidis P. The all-on-4 modified polyetheretherketone treatment approach: A clinical report. J Prosthet Dent. 2018 Apr;119(4):516–21.
  • 19. Zhang G, Yuan H, Chen X, Wang W, Chen J, Liang J, et al. A Three-Dimensional Finite Element Study on the Biomechanical Simulation of Various Structured Dental Implants and Their Surrounding Bone Tissues. Int J Dent. 2016;2016:1–9.
  • 20. Pieri F, Aldini NN, Fini M, Corinaldesi G. Immediate Occlusal Loading of Immediately Placed Implants Supporting Fixed Restorations in Completely Edentulous Arches: A 1‐Year Prospective Pilot Study. J Periodontol. 2009 Mar;80(3):411–21.
  • 21. Sirandoni D, Leal E, Weber B, Noritomi PY, Fuentes R, Borie E. Effect of Different Framework Materials in Implant-Supported Fixed Mandibular Prostheses: A Finite Element Analysis. Int J Oral Maxillofac Implants. 2019;34(6):e107–14.
  • 22. Liu T, Mu Z, Yu T, Wang C, Huang Y. Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: a three-dimensional finite element analysis. Comput Methods Biomech Biomed Engin. 2019 May;22(6):585–94.
  • 23. Seemann R, Marincola M, Seay D, Perisanidis C, Barger N, Ewers R. Preliminary results of fixed, fiber-reinforced resin bridges on four 4- × 5-mm ultrashort implants in compromised bony sites: a pilot study. J Oral Maxillofac Surg. 2015 Apr;73(4):630–40.
  • 24. Bacchi A, Consani RLX, Mesquita MF, Dos Santos MBF. Effect of framework material and vertical misfit on stress distribution in implant-supported partial prosthesis under load application: 3-D finite element analysis. Acta Odontol Scand. 2013 Sep;71(5):1243–9.
  • 25. ÇALIŞKAN A, YÖNDEM İ. Stress Analysis Of Fixed Dental Prostheses Produced With Different Materials According To The All-On-Four Concept. Journal of Biotechnology and Strategic Health Research. 2019 Dec 31;3(3):183–91.
There are 25 citations in total.

Details

Primary Language English
Subjects Dentistry (Other)
Journal Section Research Article
Authors

Ege Çolak 0000-0001-7298-9303

Erhan Çömlekoğlu 0000-0002-0915-5821

Mehmet Sonugelen 0000-0002-8002-9115

Makbule Heval Şahan 0000-0003-0825-8914

Publication Date March 20, 2025
Submission Date December 26, 2024
Acceptance Date February 23, 2025
Published in Issue Year 2025 Volume: 26 Issue: 1

Cite

EndNote Çolak E, Çömlekoğlu E, Sonugelen M, Şahan MH (March 1, 2025) Impact of Different Substructure and Superstructure Materials on Bone Stress Distribution in All-on-4 Prosthetic Restorations. Meandros Medical And Dental Journal 26 1 117–128.