Research Article
BibTex RIS Cite

Geçici Restorasyon Materyallerinde Tabaka Kalınlığının Yüzey Pürüzlülüğü, Renk Stabilitesi ve Mikrobiyal Tutulum Üzerine Etkisi: İn vitro Bir Çalışma

Year 2025, Volume: 26 Issue: 3, 326 - 334, 22.09.2025
https://doi.org/10.69601/meandrosmdj.1673654

Abstract

Amaç: Bu çalışma, geçici restorasyonlarda 3D baskı katman kalınlığının (BLT) yüzey pürüzlülüğü, renk stabilitesi ve mikrobiyal adezyon üzerindeki etkisini değerlendirmeyi ve bu bulguları geleneksel ve kazıma yöntemiyle üretilen örneklerle karşılaştırmayı amaçlamaktadır.
Gereç ve Yöntemler: Disk şeklinde örnekler (2 mm kalınlık, 10 mm çap) geleneksel, 3D baskı ve kazıma olmak üzere üç farklı üretim yöntemiyle hazırlanmıştır. 3D baskı örnekleri, Dijital Işık İşleme (DLP) yazıcısı kullanılarak 30 μm, 50 μm ve 70 μm katman kalınlıklarında üretilmiştir. Yüzey pürüzlülüğü, konfokal mikroskopi ile ölçülmüştür. Renk stabilitesi, örneklerin 14 gün boyunca yapay türük, kahve ve kırmızı şarap içinde bekletilmesi sonrasında bir diş spektrofotometresi kullanılarak belirlenmiştir. Mikrobiyal adezyon, bakteriyel ve fungal suşlar kullanılarak değerlendirilmiş ve adezyon seviyeleri sınıflandırılmıştır.
Bulgular: İstatistiksel analizler, BLT’nin yüzey pürüzlülüğü önemli ölçüede etkilediğini göstermiştir. 30 μm BLT en düzgün yüzeye sahip olurken, en fazla renk değişikliği 70 μm BLT grubunda gözlenmiştir. Mikrobiyal adezyon, kazıma örneklerinde 3D baskı ve geleneksel akrilik rezinlere göre daha yüksek bulunmuştur.
Sonuç: BLT, 3D baskı geçici restorasyonlarının yüzey özelliklerini önemli ölçüde etkilemektedir. 30 μm BLT, düşük yüzey pürüzlülüğü ve azaltılmış renk değişikliği ile en iyi performansı sağlamıştır. Bununla birlikte, 3D baskı rezin malzemelerinin monomer içeriği hala belirsizdir ve daha fazla araştırma gerektirmektedir. 3D baskı diş malzemelerinin optimizasyonu için daha kapsamlı çalışmalar gereklidir.

References

  • 1. Alageel O. Three-dimensional printing technologies for dental prosthesis: a review. Rapid Prototyp J. 2022;28(9):1764–78.
  • 2. Lee EH, Ahn JS, Lim YJ, Kwon HB, Kim MJ. Effect of layer thickness and printing orientation on the color stability and stainability of a 3D-printed resin material. J Prosthet Dent. 2022;127(5):784.e1-784.e7.
  • 3. Warrier D, Jayalakshmi D. A review on temporary restorative materials. Int J Pharma Sci Res. 2016;7(7):315–9.
  • 4. Miura S, Fujisawa M, Komine F, Maseki T, Ogawa T, Takebe J, et al. Importance of interim restorations in the molar region. J Oral Sci. 2019;61(2):195–9.
  • 5. Moron-Conejo B, Berrendero S, Bai S, Martinez-Rus F, Pradies G. Fit comparison of interim crowns manufactured with open and proprietary 3D printing modes versus milling technology: An in vitro study. J Esthet Restor Dent. 2024;36:1693–703.
  • 6. Rodrigues TCM, Resende CCD, Moura GF, Santos FH de PC, Mendonça G, Zancope K, et al. Influence of fabrication method on the marginal fit of temporary restorations. Braz Oral Res. 2024;38:e063.
  • 7. Taşın S, Ismatullaev A, Usumez A. Comparison of surface roughness and color stainability of 3-dimensionally printed interim prosthodontic material with conventionally fabricated and CAD-CAM milled materials. J Prosthet Dent. 2022;128(5):1094–101.
  • 8. Frasheri I, Aumer K, Keßler A, Miosge N, Folwaczny M. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. J Esthet Restor Dent. 2022;34(7):1105–12.
  • 9. Alshamrani AA, Raju R, Ellakwa A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. Biomed Res Int. 2022;2022.
  • 10. Sasany R, Jamjoon FZ, Kendirci MY, Yilmaz B. Effect of Printing Layer Thickness on Optical Properties and Surface Roughness of 3D-Printed Resins: An In Vitro Study. Int J Prosthodont. 2024;37(7):S165–73.
  • 11. Atria PJ, Bordin D, Marti F, Nayak VV, Conejo J, Jalkh EB, et al. 3D‐printed resins for provisional dental restorations Comparison of mechanical and biological properties. J Esthet Restor Dent. 2022;34:804–15.
  • 12. Park GS, Kim SK, Heo SJ, Koak JY, Seo DG. Effects of printing parameters on the fit of implant-supported 3D printing resin prosthetics. Materials (Basel). 2019;12(16):2533.
  • 13. Piedra-Cascón W, Krishnamurthy VR, Att W, Revilla-León M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J Dent. 2021;109:103630.
  • 14. Ellakany P, Fouda SM, AlGhamdi MA, Aly NM. Comparison of the color stability and surface roughness of 3-unit provisional fixed partial dentures fabricated by milling, conventional and different 3D printing fabrication techniques. J Dent. 2023;131:104458.
  • 15. Shim JS, Kim JE, Jeong SH, Choi YJ, Ryu JJ. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J Prosthet Dent. 2020;124:468–75.
  • 16. Mazurek-Popczyk J, Nowicki A, Arkusz K, Pałka Ł, Zimoch-Korzycka A, Baldy-Chudzik K. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology. BMC Oral Health. 2022;22:442.
  • 17. Borella PS, Alvares LAS, Ribeiro MTH, Moura GF, Soares CJ, Zancopé K, et al. Physical and mechanical properties of four 3D-printed resins at two different thick layers: An in vitro comparative study. Dent Mater. 2023;39:686–92.
  • 18. Shin JW, Kim JE, Choi YJ, Shin SH, Nam NE, Shim JS, et al. Evaluation of the color stability of 3d-printed crown and bridge materials against various sources of discoloration: An in vitro study. Materials (Basel). 2020;13(23):1–13.
  • 19. Reymus M, Lümkemann N, Stawarczyk B. 3D-printed material for temporary restorations: impact of print layer thickness and post-curing method on degree of conversion. Int J Comput Dent. 2019;22(3):231–7.
  • 20. Dimitrova M, Chuchulska B, Zlatev S. Colour Stability of 3D-Printed and Prefabricated Denture Teeth after Immersion in Different Colouring Agents- An In Vitro Study. Polymers (Basel). 2022;14:3125.
  • 21. Hwangbo NK, Nam NE, Choi JH, Kim JE. Effects of the Washing Time and Washing Solution on the Biocompatibility and Mechanical Properties of 3D Printed Dental Resin Materials. Polymers (Basel). 2021;12:4410.
  • 22. Vieira Colombo AP, Magalhães CB, Hartenbach FARR, Martins do Souto R, Maciel da Silva-Boghossian C. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb Pathog. 2015;94:27–34.
  • 23. Cuesta AI, Jewtuchowicz V, Brusca MI, Nastri ML, Rosa AC. Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients. Acta Odontol Latinoam. 2010;23(1):20–6.
  • 24. Xu H, Jenkinson HF, Dongari-Bagtzoglou A. Innocent until proven guilty: Mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol Oral Microbiol. 2014;29(3):99–116.
  • 25. Song SY, Shin YH, Lee JY, Shin SW. Color stability of provisional restorative materials with different fabrication methods. J Adv Prosthodont. 2020;12(5):259–64.
  • 26. Alharbi N, Alharbi A, Osman R. Stain Susceptibility of 3D-Printed Nanohybrid Composite Restorative Material and the Efficacy of Different Stain Removal Techniques : An In Vitro Study. Materials (Basel). 2021;14:5621.
  • 27. Ezmek B, Aydin N. Do Polishing Methods and Colorant Beverages Affect the Color Stainability of 3D-printed Permanent Restorations? J Adv Oral Res. 2023;14(2):161–8.
  • 28. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–9.
  • 29. Gonzaga CC, Yoshimura HN, Cesar PF, Miranda WG. Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations. J Mater Sci Mater Med. 2009;20(5):1017–24.
  • 30. Diken Türksayar AA, Baytur S. Color stability , surface roughness and flexural strength of additively manufactured and milled interim restorative materials after aging. Odontology. 2023;111:680–6.
  • 31. Simoneti DM, Pereira-Cenci T, dos Santos MBF. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent. 2022;127:168–72.
  • 32. Al-qahtani AS, Tulbah HI, Binhasan M, Abbasi MS, Ahmed N, Shabib S, et al. Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques. Polymers (Basel). 2021;13:4077.
  • 33. Arnold C, Monsees D, Hey J, Schweyen R. Surface quality of 3D-printed models as a function of various printing parameters. Materials (Basel). 2019;12(12):1–15.
  • 34. Elagra MI, Rayyan MR, Alhomaidhi MM, Alanaziy AA, Alnefaie MO. Color stability and marginal integrity of interim crowns: An in vitro study. Eur J Dent. 2017;11:330–4.
  • 35. Sari T, Usumez A, Strasser T, Abdurrahman Ş, Rosentritt M. Temporary materials : comparison of in vivo and in vitro performance. Clin Oral Invest. 2020;(24):4061–8.
  • 36. Almejrad L, Yang C, Morton D, Lin W. The Effects of Beverages and Surface Treatments on the Color Stability of 3D-Printed Interim Restorations. J Prosthodont. 2022;31:165–70.
  • 37. Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G, et al. Development of an in vitro assay, based on the biofilm ring test®, for rapid profiling of biofilm-growing bacteria. Front Microbiol. 2016;7(SEP):1–14.
  • 38. Ciolacu L, Zand E, Negrau C, Jaeger H. Bacterial Attachment and Biofilm Formation on Antimicrobial Sealants and Stainless Steel Surfaces. Foods. 2022;11:3096.
  • 39. Wei X, Gao L, Wu K, Pan Y, Jiang L, Lin H, et al. In vitro study of surface properties and microbial adhesion of various dental polymers fabricated by different manufacturing techniques after thermocycling. Clin Oral Invest. 2022;26(12):7287–97.
  • 40. Aykent F, Yondem I, Ozyesil AG, Gunal SK, Avunduk MC, Ozkan S. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J Prosthet Dent. 2010;103:221–7.
  • 41. Lin NJ, Keeler C, Kraigsley AM, Ye J, Lin-Gibson S. Effect of dental monomers and initiators on Streptococcus mutans oral biofilms. Dent Mater. 2018;34(5):776–85.
  • 42. Berghaus E, Klocke T, Maletz R, Petersen S. Degree of conversion and residual monomer elution of 3D-printed, milled and self-cured resin-based composite materials for temporary dental crowns and bridges. J Mater Sci Mater Med. 2023;34(5):1–13.
  • 43. Carneiro Pereira AL, Souza Curinga MR, Melo Segundo HV, da Fonte Porto Carreiro A. Factors that influence the accuracy of intraoral scanning of total edentulous arches rehabilitated with multiple implants: A systematic review. J Prosthet Dent [Internet]. 2023;129(6):855–62. Available from: https://doi.org/10.1016/j.prosdent.2021.09.001
  • 44. Park JW, Song CW, Jung JH, Ahn SJ, Ferracane JL. The effects of surface roughness of composite resin on biofilm formation of Streptococcus mutans in the presence of saliva. Oper Dent. 2012;37(5):532–9.
  • 45. Roosjen A, Busscher HJ, Norde W, Van der Mei HC. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology. 2006;152(9):2673–82.

The Effect of Layer Thickness on Surface Roughness, Color Stability, and Microbial Adherence of Temporary Restoration Materials: An In Vitro Study

Year 2025, Volume: 26 Issue: 3, 326 - 334, 22.09.2025
https://doi.org/10.69601/meandrosmdj.1673654

Abstract

Objectives: This study aims to evaluate the effect of built layer thickness (BLT) on the surface roughness, color stability, and microbial adhesion of 3D-printed interim restorations, comparing them with conventional and milled resin materials.
Materials and Methods: Disk-shaped samples (2 mm thickness, 10 mm diameter) were fabricated using three different manufacturing methods: conventional, 3D printing, and milling. The 3D-printed samples were produced using a Digital Light Processing (DLP) printer with BLTs of 30 μm, 50 μm, and 70 μm. Surface roughness was measured using confocal microscopy. Color stability was assessed after immersion in artificial saliva, coffee, and red wine for 14 days, with color differences determined using a dental spectrophotometer. Microbial adhesion was evaluated using bacterial and fungal strains, and adherence levels were classified.
Results: Statistical analysis showed that BLT significantly influenced surface roughness, with 30 μm BLT exhibiting the smoothest surfaces. The highest discoloration was observed in the 70 μm BLT group, while the least discoloration was in the milling group. Microbial adhesion was higher on milled samples compared to 3D-printed materials and conventional acrylic resin.
Conclusion: BLT significantly affects the surface properties of 3D-printed interim restorations. A 30 μm BLT provided the best surface characteristics with lower roughness and reduced discoloration. However, the monomer content of 3D printing resins remains unclear, necessitating further investigation. More comprehensive studies are required to optimize 3D-printed dental materials.

References

  • 1. Alageel O. Three-dimensional printing technologies for dental prosthesis: a review. Rapid Prototyp J. 2022;28(9):1764–78.
  • 2. Lee EH, Ahn JS, Lim YJ, Kwon HB, Kim MJ. Effect of layer thickness and printing orientation on the color stability and stainability of a 3D-printed resin material. J Prosthet Dent. 2022;127(5):784.e1-784.e7.
  • 3. Warrier D, Jayalakshmi D. A review on temporary restorative materials. Int J Pharma Sci Res. 2016;7(7):315–9.
  • 4. Miura S, Fujisawa M, Komine F, Maseki T, Ogawa T, Takebe J, et al. Importance of interim restorations in the molar region. J Oral Sci. 2019;61(2):195–9.
  • 5. Moron-Conejo B, Berrendero S, Bai S, Martinez-Rus F, Pradies G. Fit comparison of interim crowns manufactured with open and proprietary 3D printing modes versus milling technology: An in vitro study. J Esthet Restor Dent. 2024;36:1693–703.
  • 6. Rodrigues TCM, Resende CCD, Moura GF, Santos FH de PC, Mendonça G, Zancope K, et al. Influence of fabrication method on the marginal fit of temporary restorations. Braz Oral Res. 2024;38:e063.
  • 7. Taşın S, Ismatullaev A, Usumez A. Comparison of surface roughness and color stainability of 3-dimensionally printed interim prosthodontic material with conventionally fabricated and CAD-CAM milled materials. J Prosthet Dent. 2022;128(5):1094–101.
  • 8. Frasheri I, Aumer K, Keßler A, Miosge N, Folwaczny M. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. J Esthet Restor Dent. 2022;34(7):1105–12.
  • 9. Alshamrani AA, Raju R, Ellakwa A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. Biomed Res Int. 2022;2022.
  • 10. Sasany R, Jamjoon FZ, Kendirci MY, Yilmaz B. Effect of Printing Layer Thickness on Optical Properties and Surface Roughness of 3D-Printed Resins: An In Vitro Study. Int J Prosthodont. 2024;37(7):S165–73.
  • 11. Atria PJ, Bordin D, Marti F, Nayak VV, Conejo J, Jalkh EB, et al. 3D‐printed resins for provisional dental restorations Comparison of mechanical and biological properties. J Esthet Restor Dent. 2022;34:804–15.
  • 12. Park GS, Kim SK, Heo SJ, Koak JY, Seo DG. Effects of printing parameters on the fit of implant-supported 3D printing resin prosthetics. Materials (Basel). 2019;12(16):2533.
  • 13. Piedra-Cascón W, Krishnamurthy VR, Att W, Revilla-León M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J Dent. 2021;109:103630.
  • 14. Ellakany P, Fouda SM, AlGhamdi MA, Aly NM. Comparison of the color stability and surface roughness of 3-unit provisional fixed partial dentures fabricated by milling, conventional and different 3D printing fabrication techniques. J Dent. 2023;131:104458.
  • 15. Shim JS, Kim JE, Jeong SH, Choi YJ, Ryu JJ. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J Prosthet Dent. 2020;124:468–75.
  • 16. Mazurek-Popczyk J, Nowicki A, Arkusz K, Pałka Ł, Zimoch-Korzycka A, Baldy-Chudzik K. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology. BMC Oral Health. 2022;22:442.
  • 17. Borella PS, Alvares LAS, Ribeiro MTH, Moura GF, Soares CJ, Zancopé K, et al. Physical and mechanical properties of four 3D-printed resins at two different thick layers: An in vitro comparative study. Dent Mater. 2023;39:686–92.
  • 18. Shin JW, Kim JE, Choi YJ, Shin SH, Nam NE, Shim JS, et al. Evaluation of the color stability of 3d-printed crown and bridge materials against various sources of discoloration: An in vitro study. Materials (Basel). 2020;13(23):1–13.
  • 19. Reymus M, Lümkemann N, Stawarczyk B. 3D-printed material for temporary restorations: impact of print layer thickness and post-curing method on degree of conversion. Int J Comput Dent. 2019;22(3):231–7.
  • 20. Dimitrova M, Chuchulska B, Zlatev S. Colour Stability of 3D-Printed and Prefabricated Denture Teeth after Immersion in Different Colouring Agents- An In Vitro Study. Polymers (Basel). 2022;14:3125.
  • 21. Hwangbo NK, Nam NE, Choi JH, Kim JE. Effects of the Washing Time and Washing Solution on the Biocompatibility and Mechanical Properties of 3D Printed Dental Resin Materials. Polymers (Basel). 2021;12:4410.
  • 22. Vieira Colombo AP, Magalhães CB, Hartenbach FARR, Martins do Souto R, Maciel da Silva-Boghossian C. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb Pathog. 2015;94:27–34.
  • 23. Cuesta AI, Jewtuchowicz V, Brusca MI, Nastri ML, Rosa AC. Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients. Acta Odontol Latinoam. 2010;23(1):20–6.
  • 24. Xu H, Jenkinson HF, Dongari-Bagtzoglou A. Innocent until proven guilty: Mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol Oral Microbiol. 2014;29(3):99–116.
  • 25. Song SY, Shin YH, Lee JY, Shin SW. Color stability of provisional restorative materials with different fabrication methods. J Adv Prosthodont. 2020;12(5):259–64.
  • 26. Alharbi N, Alharbi A, Osman R. Stain Susceptibility of 3D-Printed Nanohybrid Composite Restorative Material and the Efficacy of Different Stain Removal Techniques : An In Vitro Study. Materials (Basel). 2021;14:5621.
  • 27. Ezmek B, Aydin N. Do Polishing Methods and Colorant Beverages Affect the Color Stainability of 3D-printed Permanent Restorations? J Adv Oral Res. 2023;14(2):161–8.
  • 28. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–9.
  • 29. Gonzaga CC, Yoshimura HN, Cesar PF, Miranda WG. Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations. J Mater Sci Mater Med. 2009;20(5):1017–24.
  • 30. Diken Türksayar AA, Baytur S. Color stability , surface roughness and flexural strength of additively manufactured and milled interim restorative materials after aging. Odontology. 2023;111:680–6.
  • 31. Simoneti DM, Pereira-Cenci T, dos Santos MBF. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent. 2022;127:168–72.
  • 32. Al-qahtani AS, Tulbah HI, Binhasan M, Abbasi MS, Ahmed N, Shabib S, et al. Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques. Polymers (Basel). 2021;13:4077.
  • 33. Arnold C, Monsees D, Hey J, Schweyen R. Surface quality of 3D-printed models as a function of various printing parameters. Materials (Basel). 2019;12(12):1–15.
  • 34. Elagra MI, Rayyan MR, Alhomaidhi MM, Alanaziy AA, Alnefaie MO. Color stability and marginal integrity of interim crowns: An in vitro study. Eur J Dent. 2017;11:330–4.
  • 35. Sari T, Usumez A, Strasser T, Abdurrahman Ş, Rosentritt M. Temporary materials : comparison of in vivo and in vitro performance. Clin Oral Invest. 2020;(24):4061–8.
  • 36. Almejrad L, Yang C, Morton D, Lin W. The Effects of Beverages and Surface Treatments on the Color Stability of 3D-Printed Interim Restorations. J Prosthodont. 2022;31:165–70.
  • 37. Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G, et al. Development of an in vitro assay, based on the biofilm ring test®, for rapid profiling of biofilm-growing bacteria. Front Microbiol. 2016;7(SEP):1–14.
  • 38. Ciolacu L, Zand E, Negrau C, Jaeger H. Bacterial Attachment and Biofilm Formation on Antimicrobial Sealants and Stainless Steel Surfaces. Foods. 2022;11:3096.
  • 39. Wei X, Gao L, Wu K, Pan Y, Jiang L, Lin H, et al. In vitro study of surface properties and microbial adhesion of various dental polymers fabricated by different manufacturing techniques after thermocycling. Clin Oral Invest. 2022;26(12):7287–97.
  • 40. Aykent F, Yondem I, Ozyesil AG, Gunal SK, Avunduk MC, Ozkan S. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J Prosthet Dent. 2010;103:221–7.
  • 41. Lin NJ, Keeler C, Kraigsley AM, Ye J, Lin-Gibson S. Effect of dental monomers and initiators on Streptococcus mutans oral biofilms. Dent Mater. 2018;34(5):776–85.
  • 42. Berghaus E, Klocke T, Maletz R, Petersen S. Degree of conversion and residual monomer elution of 3D-printed, milled and self-cured resin-based composite materials for temporary dental crowns and bridges. J Mater Sci Mater Med. 2023;34(5):1–13.
  • 43. Carneiro Pereira AL, Souza Curinga MR, Melo Segundo HV, da Fonte Porto Carreiro A. Factors that influence the accuracy of intraoral scanning of total edentulous arches rehabilitated with multiple implants: A systematic review. J Prosthet Dent [Internet]. 2023;129(6):855–62. Available from: https://doi.org/10.1016/j.prosdent.2021.09.001
  • 44. Park JW, Song CW, Jung JH, Ahn SJ, Ferracane JL. The effects of surface roughness of composite resin on biofilm formation of Streptococcus mutans in the presence of saliva. Oper Dent. 2012;37(5):532–9.
  • 45. Roosjen A, Busscher HJ, Norde W, Van der Mei HC. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology. 2006;152(9):2673–82.
There are 45 citations in total.

Details

Primary Language English
Subjects Dentistry (Other)
Journal Section Research Article
Authors

Bahadır Ezmek 0000-0002-1651-3260

Belgin Altun 0000-0002-8352-9692

Enes Ekinci 0009-0002-0559-3477

Cem Sahin 0000-0002-1301-8328

Publication Date September 22, 2025
Submission Date April 11, 2025
Acceptance Date July 15, 2025
Published in Issue Year 2025 Volume: 26 Issue: 3

Cite

EndNote Ezmek B, Altun B, Ekinci E, Sahin C (September 1, 2025) The Effect of Layer Thickness on Surface Roughness, Color Stability, and Microbial Adherence of Temporary Restoration Materials: An In Vitro Study. Meandros Medical And Dental Journal 26 3 326–334.