Research Article
BibTex RIS Cite

The effect of regularly performed moderate-intensity exercise program on thiol/disulfide homeostasis, and ischemia-modified albumin

Year 2022, Volume: 6 Issue: 2, 120 - 125, 20.08.2022
https://doi.org/10.30565/medalanya.1055424

Abstract

Aim: Thiol/disulfide homeostasis is an indicator of oxidative stress and antioxidant capacity. Ischemia-modified albumin (IMA) is an important marker for both oxidative stress and ischemia. We aimed to evaluate the possible effects of regularly performed moderate-intensity exercise on thiol/disulfide homeostasis, and IMA levels.

Methods: Sprague Dawley rats were used. The study was composed of an Exercise group (EG, n=9) and Control group (CG, n=6). A 10-weeks swimming exercise was performed. Thiol/disulfide homeostasis measurement method was used in this study. IMA levels were measured by a cobalt-albumin binding method.

Results: In the EG, total thiol levels were significantly higher compared to the CG (p<0.01). The disulfide/total thiol ratio was lower in the EG compared to the CG (p<0.01). We observed that there was a slight increase in IMA levels in EG (p=0.18). This increase was not statistically significant.

Conclusion: Regularly performed moderate-intensity exercise has increased native and total thiol levels. Increase of thiol levels can prevent oxidative stress. Regularly performed moderate-intensity exercise programs appear to provide favourable effects on oxidative stress. 

References

  • 1. De Angelis K, Schaan BD, Maeda CY, Dall’Ago P, Wichi RB, Irigoyen MC. Cardiovascular control in experimental diabetes. Braz J Med Biol Res. 2002;35(9):1091-1100. doi: 10.1590/S0100-879X2002000900010.
  • 2. Sclavo M. Primary prevention of coronary heart disease in women through diet and lifestyle. Ital Heart J Suppl. 2000;1(11):1496-8. PMID: 11109205.
  • 3. Kramer K, Dijkstra H, Bast A. Control of physical exercise of rats in a swimming basin. Physiol Behav. 1993;53(2):271-6. doi: 10.1016/0031-9384(93)90204-s.
  • 4. Holloszy JO, Oscai LB, Don IJ, Molé PA. Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise. Biochem Biophys Res Commun. 1970;40(6):1368-73. doi: 10.1016/0006-291x(70)90017-3.
  • 5. Gibala MJ, MacLean DA, Graham TE, Saltin B. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Physiol - Endocrinol Metab. 1998;275(2):235-42. doi: 10.1152/ajpendo.1998.275.2.E235.
  • 6. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001.
  • 7. Cremers CM, Jakob U. Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 2013; 288(37):26489-96. doi: 10.1074/jbc.R113.462929.
  • 8. Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7-8):916-22. doi: 10.1016/j.nut.2015.02.005.
  • 9. Sbarouni E, Georgiadou P, Theodorakis GN, Kremastinos DT. Ischemia-Modified Albumin in Relation to Exercise Stress Testing. J Am Coll Cardiol. 2006;48(12):2482-4. doi: 10.1016/j.jacc.2006.06.007.
  • 10. Bhakthavatsala Reddy C, Cyriac C, Desle HB. Role of “ischemia Modified Albumin” (IMA) in acute coronary syndromes. Indian Heart J. 2014;66(6):656-62. doi: 10.1016/j.ihj.2014.12.005.
  • 11. Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011;43(11):665-73. doi: 10.1152/physiolgenomics.00145.2010.
  • 12. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-32. doi: 10.1016/j.clinbiochem.2014.09.026.
  • 13. Bar-Or D, Lau E, Winkler J V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia - A preliminary report. J Emerg Med. 2000;19(4):311-5. doi: 10.1016/s0736-4679(00)00255-9.
  • 14. Pal S, Chaki B, Chattopadhyay S, Bandyopadhyay A. High-intensity exercise induced oxidative stress and skeletal muscle damage in postpubertal boys and girls: A comparative study. J Strength Cond Res. 2018;32(4):1045-52. doi: 10.1519 JSC.0000000000002167.
  • 15. Hetlelid KJ, Plews DJ, Herold E, Laursen PB, Seiler S. Rethinking the role of fat oxidation: Substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med. 2015;21;1(1):e000047. doi: 10.1136/bmjsem-2015-000047.
  • 16. Muñoz D, Olcina G, Timón R, Robles MC, Caballero MJ, Maynar M. Effect of different exercise intensities on oxidative stress markers and antioxidant response in trained cyclists. J Sports Med Phys Fitness. 2010;50(1):93-8. PMID: 20308979.
  • 17. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: Role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530-5. doi: 10.1161/01.CIR.0000080893.55729.28.
  • 18. Huertas JR, Al Fazazi S, Hidalgo-Gutierrez A, López LC, Casuso RA. Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly. Redox Biol. 2017;13:477-481. doi: 10.1016/j.redox.2017.07.009.
  • 19. Oscai LB, Spirakis CN, Wolff CA, Beck RJ. Effects of exercise and of food restriction on adipose tissue cellularity. J Lipid Res. 1972;13(5):588-92. PMID: 5075505.
  • 20. Kayacan Y, Cetinkaya A, Yazar H, Makaracı Y. Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Arch Physiol Biochem. 2021;127(6):504-8. doi: 10.1080/13813455.2019.1651868.
  • 21. Inayama T, Kumagai Y, Sakane M, Saito M, Matsuda M. Plasma protein-bound sulfhydryl group oxidation in humans following a full marathon race. Life Sci.1996;59(7):573-8. doi: 10.1016/0024-3205(96)00338-4.
  • 22. Bar-Or D, Rael LT, Bar-Or R, Slone DS, Mains CW, Rao NKR, et al. The cobalt-albumin binding assay: Insights into its mode of action. Clin Chim Acta. 2008;387(1-2):120-7. doi: 10.1016/j.cca.2007.09.018.
  • 23. Apple FS, Quist HE, Otto AP, Mathews WE, Murakami MAM. Release characteristics of cardiac biomarkers and ischemia-modified albumin as measured by the albumin cobalt-binding test after a marathon race. Clin Chem. 2002;48(7):1097-100. PMID: 12089181.
  • 24. Zapico-Muñiz E, Santaló-Bel M, Mercé-Muntañola J, Montiel JA, Martínez-Rubio A, Ordóñez-Llanos J. Ischemia-modified albumin during skeletal muscle ischemia. Clin Chem. 2004;50(6):1063-5. doi: 10.1373/clinchem.2003.027789.
  • 25. Bhagavan NV, Lai EM, Rios PA, Yang J, Ortega-Lopez AM, Shinoda H, et al. Evaluation of human serum albumin cobalt binding assay for the assessment of myocardial ischemia and myocardial infarction. Clin Chem. 2003;49(4):581-5. doi: 10.1373/49.4.581.

Düzenli olarak uygulanan orta şiddetteki egzersiz programının tiyol/disülfid homeostazı ve iskemi modifiye albümin üzerine etkisi

Year 2022, Volume: 6 Issue: 2, 120 - 125, 20.08.2022
https://doi.org/10.30565/medalanya.1055424

Abstract

Amaç: Tiyol/disülfid homeostazı, oksidatif stresin ve antioksidan kapasitenin bir göstergesidir. İskemi-modifiye albümin (İMA), hem oksidatif stres hem de iskemi için önemli bir belirteçtir. Düzenli olarak uygulanan orta şiddetteki egzersizin tiyol/disülfid homeostazı ve IMA seviyeleri üzerine olası etkilerini değerlendirmeyi amaçladık.

Yöntemler: Sprague-Dawley sıçanlar kullanıldı. Çalışma, Egzersiz grubu (EG, n=9) ve Kontrol grubundan (KG, n=6) oluşturuldu. 10 haftalık bir yüzme egzersizi yaptırıldı. Bu çalışmada tiyol/disülfid homeostazı ölçüm yöntemi kullanıldı. İMA seviyeleri, bir kobalt-albümin bağlama yöntemiyle ölçüldü.

Bulgular: EG'de, total tiyol seviyeleri KG ile karşılaştırıldığında anlamlı derecede daha yüksekti (p<0.01). Disülfid/total tiyol oranı EG’da KG ile karşılaştırıldığında daha düşüktü (p<0.01). EG'da IMA seviyelerinde hafif bir artış olduğunu gözlemledik (p=0,18). Bu artış istatistiksel olarak anlamlı değildi.

Sonuç: Düzenli olarak uygulanan orta şiddetteki egzersiz, nativ ve total tiyol seviyelerini artırdı. Tiyol seviyelerinin artması oksidatif stresi önleyebilir. Düzenli olarak uygulanan orta şiddetteki egzersiz programlarının oksidatif stres üzerinde olumlu etkiler sağladığı görülmektedir.

References

  • 1. De Angelis K, Schaan BD, Maeda CY, Dall’Ago P, Wichi RB, Irigoyen MC. Cardiovascular control in experimental diabetes. Braz J Med Biol Res. 2002;35(9):1091-1100. doi: 10.1590/S0100-879X2002000900010.
  • 2. Sclavo M. Primary prevention of coronary heart disease in women through diet and lifestyle. Ital Heart J Suppl. 2000;1(11):1496-8. PMID: 11109205.
  • 3. Kramer K, Dijkstra H, Bast A. Control of physical exercise of rats in a swimming basin. Physiol Behav. 1993;53(2):271-6. doi: 10.1016/0031-9384(93)90204-s.
  • 4. Holloszy JO, Oscai LB, Don IJ, Molé PA. Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise. Biochem Biophys Res Commun. 1970;40(6):1368-73. doi: 10.1016/0006-291x(70)90017-3.
  • 5. Gibala MJ, MacLean DA, Graham TE, Saltin B. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Physiol - Endocrinol Metab. 1998;275(2):235-42. doi: 10.1152/ajpendo.1998.275.2.E235.
  • 6. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001.
  • 7. Cremers CM, Jakob U. Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 2013; 288(37):26489-96. doi: 10.1074/jbc.R113.462929.
  • 8. Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7-8):916-22. doi: 10.1016/j.nut.2015.02.005.
  • 9. Sbarouni E, Georgiadou P, Theodorakis GN, Kremastinos DT. Ischemia-Modified Albumin in Relation to Exercise Stress Testing. J Am Coll Cardiol. 2006;48(12):2482-4. doi: 10.1016/j.jacc.2006.06.007.
  • 10. Bhakthavatsala Reddy C, Cyriac C, Desle HB. Role of “ischemia Modified Albumin” (IMA) in acute coronary syndromes. Indian Heart J. 2014;66(6):656-62. doi: 10.1016/j.ihj.2014.12.005.
  • 11. Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011;43(11):665-73. doi: 10.1152/physiolgenomics.00145.2010.
  • 12. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-32. doi: 10.1016/j.clinbiochem.2014.09.026.
  • 13. Bar-Or D, Lau E, Winkler J V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia - A preliminary report. J Emerg Med. 2000;19(4):311-5. doi: 10.1016/s0736-4679(00)00255-9.
  • 14. Pal S, Chaki B, Chattopadhyay S, Bandyopadhyay A. High-intensity exercise induced oxidative stress and skeletal muscle damage in postpubertal boys and girls: A comparative study. J Strength Cond Res. 2018;32(4):1045-52. doi: 10.1519 JSC.0000000000002167.
  • 15. Hetlelid KJ, Plews DJ, Herold E, Laursen PB, Seiler S. Rethinking the role of fat oxidation: Substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med. 2015;21;1(1):e000047. doi: 10.1136/bmjsem-2015-000047.
  • 16. Muñoz D, Olcina G, Timón R, Robles MC, Caballero MJ, Maynar M. Effect of different exercise intensities on oxidative stress markers and antioxidant response in trained cyclists. J Sports Med Phys Fitness. 2010;50(1):93-8. PMID: 20308979.
  • 17. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: Role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530-5. doi: 10.1161/01.CIR.0000080893.55729.28.
  • 18. Huertas JR, Al Fazazi S, Hidalgo-Gutierrez A, López LC, Casuso RA. Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly. Redox Biol. 2017;13:477-481. doi: 10.1016/j.redox.2017.07.009.
  • 19. Oscai LB, Spirakis CN, Wolff CA, Beck RJ. Effects of exercise and of food restriction on adipose tissue cellularity. J Lipid Res. 1972;13(5):588-92. PMID: 5075505.
  • 20. Kayacan Y, Cetinkaya A, Yazar H, Makaracı Y. Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Arch Physiol Biochem. 2021;127(6):504-8. doi: 10.1080/13813455.2019.1651868.
  • 21. Inayama T, Kumagai Y, Sakane M, Saito M, Matsuda M. Plasma protein-bound sulfhydryl group oxidation in humans following a full marathon race. Life Sci.1996;59(7):573-8. doi: 10.1016/0024-3205(96)00338-4.
  • 22. Bar-Or D, Rael LT, Bar-Or R, Slone DS, Mains CW, Rao NKR, et al. The cobalt-albumin binding assay: Insights into its mode of action. Clin Chim Acta. 2008;387(1-2):120-7. doi: 10.1016/j.cca.2007.09.018.
  • 23. Apple FS, Quist HE, Otto AP, Mathews WE, Murakami MAM. Release characteristics of cardiac biomarkers and ischemia-modified albumin as measured by the albumin cobalt-binding test after a marathon race. Clin Chem. 2002;48(7):1097-100. PMID: 12089181.
  • 24. Zapico-Muñiz E, Santaló-Bel M, Mercé-Muntañola J, Montiel JA, Martínez-Rubio A, Ordóñez-Llanos J. Ischemia-modified albumin during skeletal muscle ischemia. Clin Chem. 2004;50(6):1063-5. doi: 10.1373/clinchem.2003.027789.
  • 25. Bhagavan NV, Lai EM, Rios PA, Yang J, Ortega-Lopez AM, Shinoda H, et al. Evaluation of human serum albumin cobalt binding assay for the assessment of myocardial ischemia and myocardial infarction. Clin Chem. 2003;49(4):581-5. doi: 10.1373/49.4.581.
There are 25 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases
Journal Section Research Article
Authors

Mukaddes Pala 0000-0002-0610-0526

Mehmet Altan This is me 0000-0002-3275-1234

Ferahat Hanikoglu This is me 0000-0002-6979-9469

Salim Neselioglu This is me 0000-0002-0974-5717

Özcan Erel 0000-0002-2996-3236

Gökhan Metin 0000-0002-0770-2692

Early Pub Date August 20, 2022
Publication Date August 20, 2022
Submission Date January 31, 2022
Acceptance Date May 8, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

Vancouver Pala M, Altan M, Hanikoglu F, Neselioglu S, Erel Ö, Metin G. The effect of regularly performed moderate-intensity exercise program on thiol/disulfide homeostasis, and ischemia-modified albumin. Acta Med. Alanya. 2022;6(2):120-5.

9705

This Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.