Year 2018,
Volume: 1 Issue: 3, 130 - 142, 28.09.2018
Arzu Özlüer Hunt
,
Ferbal Özkan Yılmaz
,
Zeynep Erçen
References
- Ahmad, F., Ali, S. S., Usmanghani, K., Ali, M. (1991) Pak. J. Pharm. Sci., 4, 91 (1991).
- Alexis, M. N. (1997). Fish meal and fish oil replacers in Mediterranean marine fish diets, In: A. Tacon and B. Basurco, Eds., Feeding Tomorrow’s Fish, Proceedings of the Workshop of the CIHEAM Network on Technology of Aquaculture in the Mediterranean (TECAM) Cahiers Options Méditerranéennes, Vol. 22:183-204.
- AOAC (Association of Official Analytical Chemist) (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemist, Arlington.
- Babalola, T. O., Apata, D. F., Omotosho, J. S., Adebayo, M. A. (2011). Differential effects of dietary lipids on growth performance, digestibility, fatty acid composition and histology of African catfish (Heterobranchus longifilis) fingerlings, Food and Nutrition Sciences, 2, 11-21.
- Barlow, S. (2000). Fishmeal and fish oil; sustainable feed ingredients for aquafeeds. Glob. Aquacult. Advocate, 4, 85-88.
- Bell, J.G., Henderson, R. J., Tocher, D.R., McGhee, F., Dick, J. R., Porter, A., Smullen, R.P., Sargent, J. R. (2002). Substituting fish oil with crude palm oil in the diet of Atlantic Salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. J Nutr 132:222–230.
- Bligh EC, Dyer WJ (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37:913–917.
- Brett, J. R. (1979). Environmental factors and growth. in Fish Physiology, vol. 8. Bioenergetics and Growth, Pp. 599-675 W. S. Hoar, D. J. Randall, and J. R. Brett, eds. New York: Academic Press
- Caballero, M.J., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., Izquierdo, M.S. (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout (Oncorrynchus mykiss). Aquaculture, 214(1-4): 253-271.
- FAO, (2015). Fisheries Report (http://www.fao.org/fi/statist/FİSOFT/FİSHPLUS.asp, Accessed on March, 2018.
- Grant, A. A. M., Baker, D., Higgs, D. A., Colin J. B., Richards, J. G., Balfry S. K., Schulte. P. M. (2008). Effects of dietary canola oil level on growth, fatty acid composition and osmoregulatory ability of juvenile fall chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 277: 303–312.
- HMSO UK (1994) Nutritional aspects of cardiovascular disease (report on health and social subjects no. 46), London
- Ioannis, T.K., Bell, M. V., Little, D. C., Yakupitiyage, A. (2007). Replacement of dietary fish oils by alpha-linolenic acid-rich oils lowers omega- 3 content in tilapia flesh. Lipids, 42:547–559.
- IUPAC, (1979). Standards methods for the analysis of oils, fats and derivatives, 6th edn. Pergaman Press, London.
- Kiessling, K. H., Kiessling,(1993). Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria, Canadian Journal of Zoology, 71, 248-251.
- Kumar, G., Engle, C. R. (2016). Technological advances that led to growth of shrimp, salmon, and tilapia farming, Reviews in Fisheries Science & Aquaculture, 24:2, 136-152.
- Kris-Etherton PM, Harris WS, Appel LJ. (2002). American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106 (21): 2747- 57.
- Leaver, M. J.; Bautista, J. M.; Björnsson, B. T.; Jönsson, E., Krey , G.; Douglas, R. Tocher, B.;Torstensen, B. E. (2008). Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-Fish Aquaculture, Reviews in Fisheries Science, 16:1, 73-94.
- Mohebi-Nejad, A and Bikdeli, B. (2014). Omega-3 Supplements and Cardiovascular Diseases, Tanaffos, 13(1): 6-14.
- Montero, D., Robaina, L. E., Socorro, J., Panseri, S., Bellagama, F., Moretti, V. M. (2001). Alteration of Liver and Muscle Fatty Acid Composition in Gilthead Seabream (Sparus aurata) Juveniles Held at High Stocking Density and Fed an Essential Fatty Acid Deficient Diet,” Fish Physiology and Biochemistry, Vol. 24, 63-72.
- Montero, D., Robaine, L., Caballero, M.J., Ginẻs, R., Izquierdo, M.S. (2005). Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet.
- Naylor, R. L., Hardy,R. W., Dominique P. Chiu, B. A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D. M., Rebecca, J., Hua,G. K., Nichols, P. D. (2009). Feeding aquaculture in an era of finite resources, PNAS,106 (36) 15103-15110.
- Ng, W.K., Lim, P.K., Boey, P.L. (2003). Dietary palm oil source affects growth, fatty acid composition and muscle α-tocopherol concentration of African catfish (Clarias gariepinus). Aquaculture, 215(1-4): 229-243.
- Olsen, R. E., Henderson, R. J., McAndrew, B. J. (1990). The conversion of linoleic acid and linolenic acid to longer chain polyunsaturated fatty acids by Tilapia (Oreochromis nilotica) in vivo. Fish Physiol Biochem 8:261–270.
- Piedecausa, M.A., Mazon, M.J., Garcia-Garcia, B. And Hernandez, M.D. (2007). Effects of total replacement of fish oil by vegetable oil in the diets of sharpsnout sea bream (Diplodus pintazzo). Aquaculture, 263(1-4):211-219.
- Sargent, J. R., Henderson, R. J. & Tocher, D. R. (1989) The lipids. In: Fish Nutrition (Halver, J. E., ed.), pp. 154–218. Academic Press, New York, NY.Sargent, J.R., Tacon, A., (1999). Development of farmed fish: a nutritionally necessary alternative to meat. Proc. Nutr. Soc., 58, 377-383.
- Sargent J. R.; Bell, J. G., McEvoy, L., Tocher, D. R., Estevez, A., (1999). Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199.
- Sargent J.R., Tocher, D.R., Bell, J. G. (2002). The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd ed. Academic, San Diego, pp. 181–257
- Shepherd, J and Bachis, E. (2014). Changing supply and demand for fish oil, Aquaculture Economics & Management, 18:4, 395-416, DOI: 10.1080/13657305.2014.959212
- Spisni, E., Tugnoli, Ponticelli, A., Mordenti, T., Tomasi, V. (1998). Hepatic steatosis in artificially fed marine teleosts, Journal of Fish Diseases, 21(3): 177-184.
- Tacon,A. G. J. (1996). “Lipid Nutritional Pathology in Farmed Fish,” Archives in Animal Nutrition, 1996, Vol. 49, No. 1, pp. 33-39.
- Tacon, A.G.J. (2004). Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic Resources, Culture & Development, 1(1):3-14.
- Takeuchi, T., Arai, S., Watanabe, T., Shimma, Y. (1980). Requirement of eel Anguilla japonica for essential fatty acids, Bulletin of the Japanese Society of Scientific Fisheries, 46 (3), 345-353.
- Tocher, D. R., Agaba, M., Hastings, N., Bell, J. G., Dick, J. R., Teale, A. J. (2002). Nutritional regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis niloticus). Fish Physiol Biochem., 24:309–320.
- United Nations (UN, 2010) MDG Report 2010 En 20100604 r14 Final.indd Sec2:6.
Comparing the Effects of Feeding a Fish Oil- or a Cod Liver Oil -Based Diet on Growth, Feed Utilization and Muscle Fatty Acid Composition Nile Tilapia (Oreochromis niloticus)
Year 2018,
Volume: 1 Issue: 3, 130 - 142, 28.09.2018
Arzu Özlüer Hunt
,
Ferbal Özkan Yılmaz
,
Zeynep Erçen
Abstract
The present study was performed to investigate the influence
of fish oil (FO) and cod liver oil (CLO) as the dietary lipid sources on
the growth performance, feed utilization and fatty acid (FA) composition of Oreochromis niloticus. two isonitrogenous
(38% crude protein), isocaloric (18.9 MJ GE/kg) diets containing 6% of added
fat from the lipid sources were formulated and used. Each diet was fed to
triplicate groups of 17 fish of 18.18 ± 0.02 g mean initial body weight fed
with %3 body weight two times a daily. The tilapia was raised at
28±1 °C in 6 square
experimental cages (1×1×1.25 m) during the 60 days. Results showed that the
source of added lipid significantly influence (P<0.05)
final body weight, live body weight and daily growth rate but did not affect
specific growth rate, feed conversion ratio and survival, rate of tilapia.
There was no significant difference in the fillet proximate composition of fish
fed the FO or CLO diets, except for fish fed the CLO diet showed lower lipid
deposition (P<0.05). The deposition of
fatty acids in fish tissues was generally influenced by the fatty acid profile
of the diets. Fillet fatty acid profiles of tilapia fed CLO-based diet had
significantly higher concentrations of saturated and monounsaturated fatty
acids, but lower levels of polyunsaturated fatty acids (PUFA) compared to the
fish fed the FO diet. Fillet of fish fed the FO diet had significantly higher
concentrations of DHA (docosahexaenoic acid) compared with fish fed CLO-based
diets (P<0.05). EPA (eicosapentaenoic
acid) did not showed significantly different both diet (P>0.05).
In fish fed FO diet group, both n−3
and n−6 PUFA were the highest when
compared with fish fed with CLO diet. The lipid source not influenced (P<0.05) hepatosomatic index (HSI) and
viscerosomatic index (VSI). However, fish fed CLO contained diet showed
significantly higher liver fat (20.20±0.22) than fish fed FO diet group
(13.88±0.22) (P<0.001).
References
- Ahmad, F., Ali, S. S., Usmanghani, K., Ali, M. (1991) Pak. J. Pharm. Sci., 4, 91 (1991).
- Alexis, M. N. (1997). Fish meal and fish oil replacers in Mediterranean marine fish diets, In: A. Tacon and B. Basurco, Eds., Feeding Tomorrow’s Fish, Proceedings of the Workshop of the CIHEAM Network on Technology of Aquaculture in the Mediterranean (TECAM) Cahiers Options Méditerranéennes, Vol. 22:183-204.
- AOAC (Association of Official Analytical Chemist) (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemist, Arlington.
- Babalola, T. O., Apata, D. F., Omotosho, J. S., Adebayo, M. A. (2011). Differential effects of dietary lipids on growth performance, digestibility, fatty acid composition and histology of African catfish (Heterobranchus longifilis) fingerlings, Food and Nutrition Sciences, 2, 11-21.
- Barlow, S. (2000). Fishmeal and fish oil; sustainable feed ingredients for aquafeeds. Glob. Aquacult. Advocate, 4, 85-88.
- Bell, J.G., Henderson, R. J., Tocher, D.R., McGhee, F., Dick, J. R., Porter, A., Smullen, R.P., Sargent, J. R. (2002). Substituting fish oil with crude palm oil in the diet of Atlantic Salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. J Nutr 132:222–230.
- Bligh EC, Dyer WJ (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37:913–917.
- Brett, J. R. (1979). Environmental factors and growth. in Fish Physiology, vol. 8. Bioenergetics and Growth, Pp. 599-675 W. S. Hoar, D. J. Randall, and J. R. Brett, eds. New York: Academic Press
- Caballero, M.J., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., Izquierdo, M.S. (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout (Oncorrynchus mykiss). Aquaculture, 214(1-4): 253-271.
- FAO, (2015). Fisheries Report (http://www.fao.org/fi/statist/FİSOFT/FİSHPLUS.asp, Accessed on March, 2018.
- Grant, A. A. M., Baker, D., Higgs, D. A., Colin J. B., Richards, J. G., Balfry S. K., Schulte. P. M. (2008). Effects of dietary canola oil level on growth, fatty acid composition and osmoregulatory ability of juvenile fall chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 277: 303–312.
- HMSO UK (1994) Nutritional aspects of cardiovascular disease (report on health and social subjects no. 46), London
- Ioannis, T.K., Bell, M. V., Little, D. C., Yakupitiyage, A. (2007). Replacement of dietary fish oils by alpha-linolenic acid-rich oils lowers omega- 3 content in tilapia flesh. Lipids, 42:547–559.
- IUPAC, (1979). Standards methods for the analysis of oils, fats and derivatives, 6th edn. Pergaman Press, London.
- Kiessling, K. H., Kiessling,(1993). Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria, Canadian Journal of Zoology, 71, 248-251.
- Kumar, G., Engle, C. R. (2016). Technological advances that led to growth of shrimp, salmon, and tilapia farming, Reviews in Fisheries Science & Aquaculture, 24:2, 136-152.
- Kris-Etherton PM, Harris WS, Appel LJ. (2002). American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106 (21): 2747- 57.
- Leaver, M. J.; Bautista, J. M.; Björnsson, B. T.; Jönsson, E., Krey , G.; Douglas, R. Tocher, B.;Torstensen, B. E. (2008). Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-Fish Aquaculture, Reviews in Fisheries Science, 16:1, 73-94.
- Mohebi-Nejad, A and Bikdeli, B. (2014). Omega-3 Supplements and Cardiovascular Diseases, Tanaffos, 13(1): 6-14.
- Montero, D., Robaina, L. E., Socorro, J., Panseri, S., Bellagama, F., Moretti, V. M. (2001). Alteration of Liver and Muscle Fatty Acid Composition in Gilthead Seabream (Sparus aurata) Juveniles Held at High Stocking Density and Fed an Essential Fatty Acid Deficient Diet,” Fish Physiology and Biochemistry, Vol. 24, 63-72.
- Montero, D., Robaine, L., Caballero, M.J., Ginẻs, R., Izquierdo, M.S. (2005). Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet.
- Naylor, R. L., Hardy,R. W., Dominique P. Chiu, B. A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D. M., Rebecca, J., Hua,G. K., Nichols, P. D. (2009). Feeding aquaculture in an era of finite resources, PNAS,106 (36) 15103-15110.
- Ng, W.K., Lim, P.K., Boey, P.L. (2003). Dietary palm oil source affects growth, fatty acid composition and muscle α-tocopherol concentration of African catfish (Clarias gariepinus). Aquaculture, 215(1-4): 229-243.
- Olsen, R. E., Henderson, R. J., McAndrew, B. J. (1990). The conversion of linoleic acid and linolenic acid to longer chain polyunsaturated fatty acids by Tilapia (Oreochromis nilotica) in vivo. Fish Physiol Biochem 8:261–270.
- Piedecausa, M.A., Mazon, M.J., Garcia-Garcia, B. And Hernandez, M.D. (2007). Effects of total replacement of fish oil by vegetable oil in the diets of sharpsnout sea bream (Diplodus pintazzo). Aquaculture, 263(1-4):211-219.
- Sargent, J. R., Henderson, R. J. & Tocher, D. R. (1989) The lipids. In: Fish Nutrition (Halver, J. E., ed.), pp. 154–218. Academic Press, New York, NY.Sargent, J.R., Tacon, A., (1999). Development of farmed fish: a nutritionally necessary alternative to meat. Proc. Nutr. Soc., 58, 377-383.
- Sargent J. R.; Bell, J. G., McEvoy, L., Tocher, D. R., Estevez, A., (1999). Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199.
- Sargent J.R., Tocher, D.R., Bell, J. G. (2002). The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd ed. Academic, San Diego, pp. 181–257
- Shepherd, J and Bachis, E. (2014). Changing supply and demand for fish oil, Aquaculture Economics & Management, 18:4, 395-416, DOI: 10.1080/13657305.2014.959212
- Spisni, E., Tugnoli, Ponticelli, A., Mordenti, T., Tomasi, V. (1998). Hepatic steatosis in artificially fed marine teleosts, Journal of Fish Diseases, 21(3): 177-184.
- Tacon,A. G. J. (1996). “Lipid Nutritional Pathology in Farmed Fish,” Archives in Animal Nutrition, 1996, Vol. 49, No. 1, pp. 33-39.
- Tacon, A.G.J. (2004). Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic Resources, Culture & Development, 1(1):3-14.
- Takeuchi, T., Arai, S., Watanabe, T., Shimma, Y. (1980). Requirement of eel Anguilla japonica for essential fatty acids, Bulletin of the Japanese Society of Scientific Fisheries, 46 (3), 345-353.
- Tocher, D. R., Agaba, M., Hastings, N., Bell, J. G., Dick, J. R., Teale, A. J. (2002). Nutritional regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis niloticus). Fish Physiol Biochem., 24:309–320.
- United Nations (UN, 2010) MDG Report 2010 En 20100604 r14 Final.indd Sec2:6.