Research Article
BibTex RIS Cite
Year 2024, , 395 - 402, 31.12.2024
https://doi.org/10.24880/meditvetj.1544695

Abstract

Project Number

-

References

  • Alsaaod, M., Syring, C., Dietrich, J., Doherr, M.G., Gujan, T., & Steiner, A. (2014). A field trial of infrared thermography as a non-invasive diagnostic tool for early detection of digital dermatitis in dairy cows. The Veterinary Journal, 199(2), 281-285. https://doi.org/10.1016/j.tvjl.2013.11.028
  • Aviagen (2019). Ross 308 Broiler: Nutrition Specifications. Huntsville, AL, USA.
  • Azarpajouh, S., Weimer, SL., Calderón Díaz, J.A., & Taheri H. (2022). Smart farming: a review of animal-based measuring technologies for broiler welfare assessment. CABI Reviews, 17, 033. https://doi.org/10.1079/cabireviews202217033
  • Berg, C., & Butterworth, A. (2021). Health and disease im-pacts on broiler welfare. In A. Butterworth, L. Berg, I. de Jong, J. Mench, M. Raj, & X. Manteca (Eds.). Broiler Chickens Wel-fare in Practice (pp. 65-86). 5m Books Ltd. Essex.
  • Bloch, V., Barchilon, N., Halachmi, I., & Druyan, S. (2020). Automatic broiler temperature measuring by thermal cam-era. Biosystems Engineering, 199, 127-134. https://doi. org/10.1016/j.biosystemseng.2019.08.011
  • Caldara, F.R., dos Santos, L.S., Machado, S.T., Moi, M., Nääs, I.A., Foppa, L., Garcia, R.G., & dos Santos, R.K.S. (2014). Pig-lets’ surface temperature change at different weights at birth. Asian-Australasian Journal of Animal Sciences, 27(3), 431-438. https://doi.org/10.5713/ajas.2013.13505
  • Cândido, M.G.L., Tinôco, I.F.F., Albino, L.F.T., Freitas, L.C.S.R., Santos, T.C., Cecon, P.R., & Gates, R.S. (2020). Ef-fects of heat stress on pullet cloacal and body temperature. Poultry Science, 99(5), 2469-2477. https://doi.org/10.1016/j. psj.2019.11.062
  • Cangar, O., Aerts, J.M., Buyse, J., & Berckmans, D. (2008). Quantification of the spatial distribution of surface tempera-tures of broilers. Poultry Science, 87, 2493-2499. https://doi. org/10.3382/ps.2007-00326
  • Castro, J.O., Yanagi Junior, T., Abreu, A.L., Ferraz, P.F.P., Moura, G.B., Cecchin, D., & Conti, L. (2019). Use of thermog-raphy for the evaluation of the surface temperature of Japa-nese quail submitted at different temperatures. Agronomy Re-search, 17(4), 1560-1567. https://doi.org/10.15159/ar.19.141
  • Damane, M.M., Barazandeh, A., Sattaei, M., Mokhtari, S., Esmaeilipour, O., & Badakhshan, Y. (2018). Evaluation of body surface temperature in broiler chickens during the rear-ing period based on age, air temperature and feather condition. Iranian Journal of Applied Animal Science, 8(3), 499-504.
  • EU (2007). “EU Council Directive 2007/43/EC of 28 June 2007 laying down minimum rules for the protection of chickens kept for meat production.” Official Journal of the European Union, Luxembourg. http://data.europa.eu/eli/dir/2007/43/oj
  • Ferreira, V.M.O.S., Francisco, N.S., Belloni, M., Aguirre, G.M.Z., Caldara, F.R., Nääs, I.A., Garcia, R.G., Almeida Paz, I.C.L., & Polycarpo, G.V. (2011). Infrared thermography ap-plied to the evaluation of metabolic heat loss of chicks fed with different energy densities. Brazilian Journal of Poultry Science, 13(2), 113-118. https://doi.org/10.1590/S1516-635X2011000200005
  • Giloh, M., Shinder, D., & Yahav, S. (2012). Skin surface tem-perature of broiler chickens is correlated to body core tempera-ture and is indicative of their thermoregulatory status. Poultry Science, 91, 175-88. https://doi.org/10.3382/ps.2011-01497
  • Jacob, F.G., Baracho, M.D.S., Nääs, I.A., Souza, R., & Sal-gado, D.D.A. (2016). The use of infrared thermography in the identification of pododermatitis in broilers. Journal of the Brazilian Association of Agricultural Engineering, 36, 253-259. https://doi.org/10.1590/1809-4430-Eng.Agric. v36n2p253-259/2016
  • Kim, N.Y., Kim, S.J., Oh, M., Jang, S.Y., & Moon, S.H. (2021). Changes in facial surface temperature of laying hens under different thermal conditions. Animal Bioscience, 34(7), 1235-1242. https://doi.org/10.5713/ab.20.0647 Leeson, S., & Walsh, T. (2004). Feathering in commercial poultry I. Feather growth and composition. World’s Poul-try Science Journal, 60(1), 42-51. https://doi.org/10.1079/WPS20033
  • McManus, C., Tanure, C.B., Peripolli, V., Seixas, L., Fisch-er, V., Gabbi, A.M., Menegassi, S.R.O., Stumpf, M.T., Kolling, G.J., Dias, E., & Costa, J.B.G. (2016). Infrared thermography in animal production: an overview. Computers and Electron-ics in Agriculture, 123, 10-16. https://doi.org/10.1016/j.com-pag.2016.01.027
  • Nääs, I.A., Romanini, C.E.B., Neves, D.P., Nascimento, G.R., & Vercellino, R.A. (2010). Broiler surface temperature distri-bution of 42 day old chickens. Scientia Agricola, 67(5), 497-502. https://doi.org/10.1590/S0103-90162010000500001
  • Nääs, I.A., Garcia, R.G., & Caldara, F.R. (2014). Infrared thermal image for assessing animal health and welfare. Journal of Animal Behaviour and Biometeorology, 2(3), 66-72.
  • Nascimento, S.T., da Silva, I.J.O., Maia, A.S.C., de Castro, A.C., & Vieira, F.M.C. (2014). Mean surface temperature pre-diction models for broiler chickens-a study of sensible heat flow. International Journal of Biometeorology, 58, 195-201. https://doi.org/10.1007/s00484-013-0702-7
  • Nascimento, S.T., Maia, A.S.C., Gebremedhin, K.G., & Na-scimento, C.C.N. Metabolic heat production and evaporation of poultry. Poultry Science, 96(8), 2691-2698. https://doi. org/10.3382/ps/pex094
  • Nikkhah, A., Plaizier, J.C., Einarson, M.S., Berry, R.J., Scott, S.L., & Kennedy, A.D. (2005). Infrared thermography and vi-sual examination of hooves of dairy cows in two stages of lactation. Journal of Dairy Science, 88(8), 2749-2753. https://doi.org/10.3168/jds.S0022-0302(05)72954-4
  • Schaefer, A.L., Cook, N.J., Bench, C., Chabot, J.B., Colyn, J., Liu, T., Okine, E.K., Stewart, M., & Webster, J.R. (2012). The non-invasive and automated detection of bovine respiratory disease onset on receiver calves using infrared thermography. Research in Veterinary Science, 93(2), 928-935. https://doi.org/10.1016/j.rvsc.2011.09.021
  • Shinder, D., Rusal, M., Tanny, J., Druyan, S. & Yahav, S. (2007). Thermoregulatory response of chicks (Gallus domesticus) to low ambient temperatures at an early age. Poultry Science, 86(10), 2200-2209. https://doi.org/10.1093/ps/86.10.2200
  • Steenfeldt, S., Sørensen, P., & Nielsen, B.L. (2019). Effects of choice feeding and lower ambient temperature on feed in-take, growth, foot health, and panting of fast- and slow-grow-ing broiler strains. Poultry Science, 98(2), 503-513. http://dx. doi.org/10.3382/ps/pey323
  • Stewart, M., Stafford, K.J., Dowling, S.K., Schaefer, A.L., & Webster, J.R. (2008). Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol-ogy & Behavior, 93(4-5), 789-797. https://doi.org/10.1016/j. physbeh.2007.11.044
  • Tessier, M., Du Tremblay, D., Klopfenstein, C., Beauchamp, G., & Boulianne, M. (2003). Abdominal skin temperature vari-ation in healthy broiler chickens as determined by thermogra-phy. Poultry Science, 82(5), 846-849. https://doi.org/10.1093/ps/82.5.846
  • Tickle, P.G., & Codd, J.R. (2019). Thermoregulation in rap-id growing broiler chickens is compromised by constraints on radiative and convective cooling performance. Journal of Thermal Biology, 79, 8-14. https://doi.org/10.1016/j.jther-bio.2018.11.007
  • Torrey, S., Mohammadigheisar, M., dos Santos, M.N., Roth-schild, D., Dawson, L.C., Liu, Z., Kiarie, E.G., Edwards, A.M., Mandell, I., Karrow, N., Tulpan, D., & Widowski, T.M. (2021). In pursuit of a better broiler: growth, efficiency, and mortal-ity of 16 strains of broiler chickens. Poultry Science, 100(3), 100955. https://doi.org/10.1016/J.PSJ. 2020.12.052
  • Warriss, P.D., Pope, S.J., Brown, S.N., Wilkins, L.J., & Knowles, T.G. (2006). Estimating the body temperature of groups of pigs by thermal imaging. Veterinary Record, 158(10), 331-334. https://doi.org/10.1136/vr.158.10.331
  • Wecke, C., Khan, D.R., Sùnder, A., & Liebert, F. (2017). Age and gender depending growth of feathers and feather-free body in modern fast growing meat-type chickens. Open Jour-nal of Animal Sciences, 7, 376-392. https://doi.org/10.4236/ojas.2017.74029
  • Weimer, S.L., Wideman, R.F., Scanes, C.G., Mauromousta-kos, A., Christensen, K.D., & Vizzier-Thaxton, Y. (2019). The utility of infrared thermography for evaluating lameness attrib-utable to bacterial chondronecrosis with osteomyelitis. Poultry Science, 98(4), 1575-1588. http://dx.doi.org/10.3382/ps/pey538
  • Weimer, S.L., Wideman, R.F., Scanes, C.G., Mauromous-takos, A., Christensen, K.D., & Vizzier-Thaxton, Y. (2020). Broiler stress responses to light intensity, flooring type, and leg weakness as assessed by heterophil-to-lymphocyte ratios, serum corticosterone, infrared thermography, and latency to lie. Poultry Science, 99(7), 3301-3311. https://doi.org/10.1016/j. psj.2020.03.028
  • Wilcox, C.H., Sandilands, V., Mayasari, N., Asmara, I.Y., & Anang, A. (2024). A literature review of broiler chicken wel-fare, husbandry, and assessment. World’s Poultry Science Jour-nal, 80(1), 3-32. https://doi.org/10.1080/00439339.2023.226 4824
  • Yahav, S., & Giloh, M. (2012). Infrared thermography-Ap-plications in poultry biological research. In: Prakash RV (Ed). Infrared Thermography. (pp. 93-116). IntechOpen.
  • Yalcin, S., Settar, P., Ozkan, S., & Cahaner, A. (1997). Com-parative evaluation of three commercial broiler stocks in hot versus temperate climates. Poultry Science, 76(7), 921-929. https://doi.org/10.1093/ps/76.7.921

The use of infrared thermography in the identification of surface temperatures in fast- and slow-growing broiler chickens

Year 2024, , 395 - 402, 31.12.2024
https://doi.org/10.24880/meditvetj.1544695

Abstract

This study aimed to identify through infrared thermal imaging technology the surface temperature of the eye, beak, head, trunk, leg, and body of fast- and slow-growing broiler chickens at 2, 4, and 6 weeks of age. A total of 140 1-day-old broiler chicks were used in the study. Two treatments were included: fast-growing (Ross 308) and slow-growing (Hubbard JA57), with two replicates for each treatment. Thirty-five broiler chickens were placed in each pen. Beak and leg surface temperatures were consistently higher in fast-growing broiler chickens during the 2nd, 4th, and 6th weeks. Except for the 4th week, the surface temperature differences in the eyes and other feathered areas between fast- and slow-growing broiler chickens were not statistically significant. Eye surface temperature was not influenced by age in either genotype. In both genotypes, the beak and head surface temperatures increased with age, while the body and trunk surface temperatures decreased. Additionally, leg surface temperatures increased with age in fast-growing broiler chickens. The litter surface temperature was consistently higher in pens housing the fast-growing genotypes across all measured weeks. As a result, age and genotype were determined to affect the surface temperatures of broiler chickens and litter. It is thought that using infrared cameras in poultry house systems can improve the welfare of broiler chickens.

Ethical Statement

This experiment was implemented under the approval of the Animal Ethics Committee of Aydın Adnan Menderes University (64583101/2024/28).

Supporting Institution

-

Project Number

-

Thanks

For the infrared surface temperature measurements taken in this study, broiler chickens raised as part of a project supported by the Aydın Adnan Menderes University Scientific Research Projects Directorate (Project Code: VTF-23040) were used. The thermal camera used in this study was kindly provided by Prof. Dr. Güneş ERDOĞAN, to whom our sincere thanks are extended.

References

  • Alsaaod, M., Syring, C., Dietrich, J., Doherr, M.G., Gujan, T., & Steiner, A. (2014). A field trial of infrared thermography as a non-invasive diagnostic tool for early detection of digital dermatitis in dairy cows. The Veterinary Journal, 199(2), 281-285. https://doi.org/10.1016/j.tvjl.2013.11.028
  • Aviagen (2019). Ross 308 Broiler: Nutrition Specifications. Huntsville, AL, USA.
  • Azarpajouh, S., Weimer, SL., Calderón Díaz, J.A., & Taheri H. (2022). Smart farming: a review of animal-based measuring technologies for broiler welfare assessment. CABI Reviews, 17, 033. https://doi.org/10.1079/cabireviews202217033
  • Berg, C., & Butterworth, A. (2021). Health and disease im-pacts on broiler welfare. In A. Butterworth, L. Berg, I. de Jong, J. Mench, M. Raj, & X. Manteca (Eds.). Broiler Chickens Wel-fare in Practice (pp. 65-86). 5m Books Ltd. Essex.
  • Bloch, V., Barchilon, N., Halachmi, I., & Druyan, S. (2020). Automatic broiler temperature measuring by thermal cam-era. Biosystems Engineering, 199, 127-134. https://doi. org/10.1016/j.biosystemseng.2019.08.011
  • Caldara, F.R., dos Santos, L.S., Machado, S.T., Moi, M., Nääs, I.A., Foppa, L., Garcia, R.G., & dos Santos, R.K.S. (2014). Pig-lets’ surface temperature change at different weights at birth. Asian-Australasian Journal of Animal Sciences, 27(3), 431-438. https://doi.org/10.5713/ajas.2013.13505
  • Cândido, M.G.L., Tinôco, I.F.F., Albino, L.F.T., Freitas, L.C.S.R., Santos, T.C., Cecon, P.R., & Gates, R.S. (2020). Ef-fects of heat stress on pullet cloacal and body temperature. Poultry Science, 99(5), 2469-2477. https://doi.org/10.1016/j. psj.2019.11.062
  • Cangar, O., Aerts, J.M., Buyse, J., & Berckmans, D. (2008). Quantification of the spatial distribution of surface tempera-tures of broilers. Poultry Science, 87, 2493-2499. https://doi. org/10.3382/ps.2007-00326
  • Castro, J.O., Yanagi Junior, T., Abreu, A.L., Ferraz, P.F.P., Moura, G.B., Cecchin, D., & Conti, L. (2019). Use of thermog-raphy for the evaluation of the surface temperature of Japa-nese quail submitted at different temperatures. Agronomy Re-search, 17(4), 1560-1567. https://doi.org/10.15159/ar.19.141
  • Damane, M.M., Barazandeh, A., Sattaei, M., Mokhtari, S., Esmaeilipour, O., & Badakhshan, Y. (2018). Evaluation of body surface temperature in broiler chickens during the rear-ing period based on age, air temperature and feather condition. Iranian Journal of Applied Animal Science, 8(3), 499-504.
  • EU (2007). “EU Council Directive 2007/43/EC of 28 June 2007 laying down minimum rules for the protection of chickens kept for meat production.” Official Journal of the European Union, Luxembourg. http://data.europa.eu/eli/dir/2007/43/oj
  • Ferreira, V.M.O.S., Francisco, N.S., Belloni, M., Aguirre, G.M.Z., Caldara, F.R., Nääs, I.A., Garcia, R.G., Almeida Paz, I.C.L., & Polycarpo, G.V. (2011). Infrared thermography ap-plied to the evaluation of metabolic heat loss of chicks fed with different energy densities. Brazilian Journal of Poultry Science, 13(2), 113-118. https://doi.org/10.1590/S1516-635X2011000200005
  • Giloh, M., Shinder, D., & Yahav, S. (2012). Skin surface tem-perature of broiler chickens is correlated to body core tempera-ture and is indicative of their thermoregulatory status. Poultry Science, 91, 175-88. https://doi.org/10.3382/ps.2011-01497
  • Jacob, F.G., Baracho, M.D.S., Nääs, I.A., Souza, R., & Sal-gado, D.D.A. (2016). The use of infrared thermography in the identification of pododermatitis in broilers. Journal of the Brazilian Association of Agricultural Engineering, 36, 253-259. https://doi.org/10.1590/1809-4430-Eng.Agric. v36n2p253-259/2016
  • Kim, N.Y., Kim, S.J., Oh, M., Jang, S.Y., & Moon, S.H. (2021). Changes in facial surface temperature of laying hens under different thermal conditions. Animal Bioscience, 34(7), 1235-1242. https://doi.org/10.5713/ab.20.0647 Leeson, S., & Walsh, T. (2004). Feathering in commercial poultry I. Feather growth and composition. World’s Poul-try Science Journal, 60(1), 42-51. https://doi.org/10.1079/WPS20033
  • McManus, C., Tanure, C.B., Peripolli, V., Seixas, L., Fisch-er, V., Gabbi, A.M., Menegassi, S.R.O., Stumpf, M.T., Kolling, G.J., Dias, E., & Costa, J.B.G. (2016). Infrared thermography in animal production: an overview. Computers and Electron-ics in Agriculture, 123, 10-16. https://doi.org/10.1016/j.com-pag.2016.01.027
  • Nääs, I.A., Romanini, C.E.B., Neves, D.P., Nascimento, G.R., & Vercellino, R.A. (2010). Broiler surface temperature distri-bution of 42 day old chickens. Scientia Agricola, 67(5), 497-502. https://doi.org/10.1590/S0103-90162010000500001
  • Nääs, I.A., Garcia, R.G., & Caldara, F.R. (2014). Infrared thermal image for assessing animal health and welfare. Journal of Animal Behaviour and Biometeorology, 2(3), 66-72.
  • Nascimento, S.T., da Silva, I.J.O., Maia, A.S.C., de Castro, A.C., & Vieira, F.M.C. (2014). Mean surface temperature pre-diction models for broiler chickens-a study of sensible heat flow. International Journal of Biometeorology, 58, 195-201. https://doi.org/10.1007/s00484-013-0702-7
  • Nascimento, S.T., Maia, A.S.C., Gebremedhin, K.G., & Na-scimento, C.C.N. Metabolic heat production and evaporation of poultry. Poultry Science, 96(8), 2691-2698. https://doi. org/10.3382/ps/pex094
  • Nikkhah, A., Plaizier, J.C., Einarson, M.S., Berry, R.J., Scott, S.L., & Kennedy, A.D. (2005). Infrared thermography and vi-sual examination of hooves of dairy cows in two stages of lactation. Journal of Dairy Science, 88(8), 2749-2753. https://doi.org/10.3168/jds.S0022-0302(05)72954-4
  • Schaefer, A.L., Cook, N.J., Bench, C., Chabot, J.B., Colyn, J., Liu, T., Okine, E.K., Stewart, M., & Webster, J.R. (2012). The non-invasive and automated detection of bovine respiratory disease onset on receiver calves using infrared thermography. Research in Veterinary Science, 93(2), 928-935. https://doi.org/10.1016/j.rvsc.2011.09.021
  • Shinder, D., Rusal, M., Tanny, J., Druyan, S. & Yahav, S. (2007). Thermoregulatory response of chicks (Gallus domesticus) to low ambient temperatures at an early age. Poultry Science, 86(10), 2200-2209. https://doi.org/10.1093/ps/86.10.2200
  • Steenfeldt, S., Sørensen, P., & Nielsen, B.L. (2019). Effects of choice feeding and lower ambient temperature on feed in-take, growth, foot health, and panting of fast- and slow-grow-ing broiler strains. Poultry Science, 98(2), 503-513. http://dx. doi.org/10.3382/ps/pey323
  • Stewart, M., Stafford, K.J., Dowling, S.K., Schaefer, A.L., & Webster, J.R. (2008). Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol-ogy & Behavior, 93(4-5), 789-797. https://doi.org/10.1016/j. physbeh.2007.11.044
  • Tessier, M., Du Tremblay, D., Klopfenstein, C., Beauchamp, G., & Boulianne, M. (2003). Abdominal skin temperature vari-ation in healthy broiler chickens as determined by thermogra-phy. Poultry Science, 82(5), 846-849. https://doi.org/10.1093/ps/82.5.846
  • Tickle, P.G., & Codd, J.R. (2019). Thermoregulation in rap-id growing broiler chickens is compromised by constraints on radiative and convective cooling performance. Journal of Thermal Biology, 79, 8-14. https://doi.org/10.1016/j.jther-bio.2018.11.007
  • Torrey, S., Mohammadigheisar, M., dos Santos, M.N., Roth-schild, D., Dawson, L.C., Liu, Z., Kiarie, E.G., Edwards, A.M., Mandell, I., Karrow, N., Tulpan, D., & Widowski, T.M. (2021). In pursuit of a better broiler: growth, efficiency, and mortal-ity of 16 strains of broiler chickens. Poultry Science, 100(3), 100955. https://doi.org/10.1016/J.PSJ. 2020.12.052
  • Warriss, P.D., Pope, S.J., Brown, S.N., Wilkins, L.J., & Knowles, T.G. (2006). Estimating the body temperature of groups of pigs by thermal imaging. Veterinary Record, 158(10), 331-334. https://doi.org/10.1136/vr.158.10.331
  • Wecke, C., Khan, D.R., Sùnder, A., & Liebert, F. (2017). Age and gender depending growth of feathers and feather-free body in modern fast growing meat-type chickens. Open Jour-nal of Animal Sciences, 7, 376-392. https://doi.org/10.4236/ojas.2017.74029
  • Weimer, S.L., Wideman, R.F., Scanes, C.G., Mauromousta-kos, A., Christensen, K.D., & Vizzier-Thaxton, Y. (2019). The utility of infrared thermography for evaluating lameness attrib-utable to bacterial chondronecrosis with osteomyelitis. Poultry Science, 98(4), 1575-1588. http://dx.doi.org/10.3382/ps/pey538
  • Weimer, S.L., Wideman, R.F., Scanes, C.G., Mauromous-takos, A., Christensen, K.D., & Vizzier-Thaxton, Y. (2020). Broiler stress responses to light intensity, flooring type, and leg weakness as assessed by heterophil-to-lymphocyte ratios, serum corticosterone, infrared thermography, and latency to lie. Poultry Science, 99(7), 3301-3311. https://doi.org/10.1016/j. psj.2020.03.028
  • Wilcox, C.H., Sandilands, V., Mayasari, N., Asmara, I.Y., & Anang, A. (2024). A literature review of broiler chicken wel-fare, husbandry, and assessment. World’s Poultry Science Jour-nal, 80(1), 3-32. https://doi.org/10.1080/00439339.2023.226 4824
  • Yahav, S., & Giloh, M. (2012). Infrared thermography-Ap-plications in poultry biological research. In: Prakash RV (Ed). Infrared Thermography. (pp. 93-116). IntechOpen.
  • Yalcin, S., Settar, P., Ozkan, S., & Cahaner, A. (1997). Com-parative evaluation of three commercial broiler stocks in hot versus temperate climates. Poultry Science, 76(7), 921-929. https://doi.org/10.1093/ps/76.7.921
There are 35 citations in total.

Details

Primary Language English
Subjects Animal Science, Genetics and Biostatistics
Journal Section Research Articles
Authors

Solmaz Karaarslan 0000-0002-6239-2439

Ahmet Nazlıgül 0000-0003-1476-4039

Project Number -
Publication Date December 31, 2024
Submission Date September 6, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2024

Cite

APA Karaarslan, S., & Nazlıgül, A. (2024). The use of infrared thermography in the identification of surface temperatures in fast- and slow-growing broiler chickens. Mediterranean Veterinary Journal, 9(3), 395-402. https://doi.org/10.24880/meditvetj.1544695