Research Article
BibTex RIS Cite
Year 2024, , 354 - 363, 31.12.2024
https://doi.org/10.24880/meditvetj.1611156

Abstract

References

  • Amorim, F.V., Souza, H.J.M., Ferreira, A.M.R., & Fonseca, A.B.M. (2006). Clinical, cytological and histopathological evaluation of mammary masses in cats from Rio de Janeiro, Brazil. Journal of Feline Medicine and Surgery, 8(6), 379-388. https://doi.org/10.1016/j.jfms.2006.04.004
  • Ates, M. B. (2019). Immunohistochemical investigation of effects of Nigella Sativa l. and Thymoquinone on aflatoxin biotransformation in liver in broilers (Publication No: 117O872)[Doctoral thesis, Selcuk Unıversity]. Balkwill, F.R., Capasso M., & Hagemann T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(pt23), 5591-6. https://doi.org/10.1242/jcs.116392
  • Choudhury, K. R., Yagle, K. J., Swanson, P. E., Krohn, K. A., & Rajendran, J. G. (2010). A robust automated measure of average antibody staining in immunohistochemistry images. The Journal of Histochemistry and Cytochemistry, 58(2), 95–107. https://doi.org/10.1369/jhc.2009.953554
  • Goldschmidt M.H., Peña L. & Zappulli V. (2017). Tumors of the mammary gland. In: Donald J. Meuten( 5th ed.),Tumors in Domestic Animals, (p.723-65). Ames, Iowa: Wiley/Blackwel Guner, E. (2020). Investigation of tumor microenvironment, hypoxia and angiogenesis by immunohistochemical and histopathological methods in mammary tumors of dogs and cats (Publication No: 648626)[Doctoral thesis, Selcuk Unıversity].
  • Guner, E. & Hatipoğlu, F. (2023). Investigation of tumor microenvironment, hypoxia and angiogenesis by immunohistochemical and histopathological methods in canine mammary tumors. Veterinarski Arhiv, 93 (6):665-682. https://doi.org/10.24099/vet.arhiv.2007
  • Hameed, K. A., Banumathi, A., & Ulaganathan, G. (2015). Performance evaluation of maximal separation techniques in immunohistochemical scoring of tissue images. Micron, 79, 29-35. https://doi.org/10.1016/j.micron.2015.07.013
  • Hayes, A. A., & Mooney, S. (1985). Feline mammary tumors. The Veterinary Clinics of North America. Small Animal Practice, 15(3), 513–520. https://doi.org/10.1016/s0195-5616(85)50054-6
  • Hayes Jr, H. M., Milne, K. L. & Mandell, C. P. (1981). Epidemiological features of feline mammary carcinoma. The Veterinary Record, 108(22), 476–479. https://doi.org/10.1136/vr.108.22.476
  • Islam, M. S., Matsumoto, M., Hidaka, R., Miyoshi, N. &Yasuda, N. (2012). Expression of NOS and VEGF in feline mammary tumours and their correlation with angiogenesis. The Veterinary Journal, 192: 338-344. https://doi.org/10.1016/j.tvjl.2011.08.032.
  • Jakab, C., Halász, J., Kiss, A., Schaff, Z., Szász, A.M., Rusvai, M., Tóth, Z.A., & Kulka, J. (2008). Evaluation of microvessel density (mvd) in canine mammary tumours by quantitative ımmunohistochemistry of the claudin-5 molecule. Acta Veterinaria Hungarica, 56(4), 495-510. https://doi.org/10.1556/AVet.56.2008.4.7.
  • Karabolovski, N., Pejcinovska, N., Dameski, P., Dodovski, P., Zdraveski, I & Stojanovski, S. (2020). Feline mammary tumors, prevalence and pathohıstologıcal classıfıcatıon. Horizons, 8, 61-68. https:/doi.org/10.20544/HORIZONS.B.03.1.16.P07
  • Madej, J.A., Madej, J. P., Dziegiel, P., Pula, B. & Nowak, M. (2013): Expression of hypoxia-inducible factor-1α and vascular density in mammary adenomas and adenocarcinomas in bitches. Acta Veterinaria Scandinavica, 55, 73. https://doi.org/10.1186/1751-0147-55-73.
  • Mantovani, A., & Locati, M. (2013). Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(7), 1478–1483. https://doi.org/10.1161/ATVBAHA.113.300168.
  • McNamara, D. A., Harmey, J. H., Walsh, T. N., Redmond, H. P. & Bouchier‐Hayes, D. J. (1998). Significance of angiogenesis in cancer therapy. British Journal of Surgery, 85(8), 1044-1055. McNeil, B., Papandreou, I., & Denko, N. C. (2016). Hypoxic reprograming of tumor metabolism, matching environmental supply with biosynthetic demand. Tumor Hypoxia, 147.
  • Millanta, F., Lazzeri, G., Vannozzi, I., Viacava, P. & Poli, A. (2002). Correlation of vascular endothelial growth factor expression to overall survival in feline invasive mammary carcinomas. Veterinary Pathology, 39, 690-696. https://doi.org/10.1354/vp.39-6-690.
  • Misdorp, W. (2002). Tumors of the mammary gland. In: Donald J. Meuten( 5th ed.),Tumors in Domestic Animals, (p.575-599). Ames, Iowa: Wiley/Blackwell. https://doi.org/10.1002/9780470376928.ch12
  • Monteiro, L. N., Rodrigues, M. A., Gomes, D. A., Salgado, B. S., & Cassali, G. D. (2018). Tumour-associated macrophages: Relation with progression and invasiveness, and assessment of M1/M2 macrophages in canine mammary tumours. The Veterinary Journal, 234, 119-125. https://doi.org/10.1016/j.tvjl.2018.02.016.
  • Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104(8), 2224-2234. https://doi.org/10.1182/blood-2004-03-1109
  • Murphy, S. (2008). Mammary tumours in dogs and cats. In Practice, 30(6), 334-339. https://doi.org/10.1136/inpract.30.6.334
  • Qiu, C. W., D. G. Lin, J. Q. Wang, C. Y. Li, & Deng, G. Z. (2008). Expression and significance of PTEN and VEGF in canine mammary gland tumours. Veterinary Research Communications, 32, 463. https://doi.org/10.1007/s11259-008-9049-7.
  • Rapisarda, A., & Melillo, G. (2009). Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resistance Updates, 12(3), 74-80. https://doi.org/10.1016/j.drup.2009.03.002. Raposo, T., Gregório, H., Pires, I., Prada, J. & Queiroga, F. L. (2014). Prognostic value of tumour‐associated macrophages in canine mammary tumours. Veterinary and Comparative Oncology, 12(1), 10-19. https://doi.org/10.1111/j.1476-5829.2012.00326.x.
  • Raposo, T. P., Pires, I., Carvalho, M. I., Prada, J., Argyle, D. J. & Queıroga, F. L. (2015). Tumour-associated macrophages are associated with vascular endothelial growth factor expression in canine mammary tumours. Veterinary and Comparative Oncology, 13, 464-474. https://doi.org/10.1111/vco.12067.
  • Restucci, B., De Vico ,G., & Maiolino, P. (2000). Evaluation of angiogenesis in canine mammary tumors by quantitative platelet endothelial cell adhesion molecule immunohistochemistry. Veterinary Pathology, 37(4), 297-301. https://doi.org/10.1354/vp.37-4-297
  • Restucci, B., Papparella, S., Maıolino, P. & De Vıco, G. (2002): Expression of vascular endothelial growth factor in canine mammary tumors. Veterinary Pathology, 39, 488-493. https://doi.org/10.1354/vp.39-4-488.
  • Shin, J. I., Lim, H. Y., Kim, H. W., Seung, B. J. & Sur, J. H. (2015). Analysis of hypoxia-inducible factor-1α expression relative to other key factors in malignant canine mammary tumours. Journal of Comparative Pathology, 153, 101-110. https://doi.org/10.1016/j.jcpa.2015.05.004.
  • Sleeckx, N., Van Brantegem, L., Van den Eynden, G., Fransen, E., Casteleyn, C., Van Cruchten, S. & Van Ginneken, C. (2014). Angiogenesis in canine mammary tumours: a morphometric and prognostic study. Journal of Comparative Pathology, 150(2-3), 175-183. https://doi.org/10.1016/j.jcpa.2013.09.005.
  • Sun, Z., Wang, S. & Zhao, R. C. (2014). The roles of mesenchymal stem cells in tumor inflammatory microenvironment. Journal of Hematology & Oncology, 7(1), 1-10.https://doi.org/10.1186/1756-8722-7-14
  • Vaupel, P. (2004). Tumor microenvironmental physiology and its implications for radiation oncology. In Seminars in Radiation Oncology (Vol. 14, No. 3, pp. 198-206). WB Saunders. https://doi.org/10.1016/j.semradonc.2004.04.008
  • Vaupel, P. & Mayer, A. (2007). Hypoxia in cancer: significance and impact on clinical outcome. Cancer and Metastasis Reviews, 26, 225-239.https://doi.org/10.1007/s10555-007-9055-1
  • Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. (1991). Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. New England Journal of Medicine, 324(1), 1-8. https://doi.org/10.1056/NEJM199101033240101
  • Zhang, Q. W., Liu, L., Gong, C. Y., Shi, H. S., Zeng, Y. H., Wang, X. Z. & Wei, Y. Q. (2012). Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS one, 7(12), e50946. https://doi.org/10.1371/journal.pone.0050946.

Determination of hypoxia, angiogenesis and tumour microenvironment in feline mammary tumours by immunohistochemical and histopathological methods

Year 2024, , 354 - 363, 31.12.2024
https://doi.org/10.24880/meditvetj.1611156

Abstract

This study used immunohistochemical method to investigate the relationship between the tumor microenvironment, hypoxia, and angiogenesis in biopsy samples of feline mammary tumors brought to Selcuk University Faculty of Veterinary Medicine and Bornova Veterinary Control Institute between 2015 and 2019. The staining of paraffin tissue sections was performed with CD31, vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1a) CD68, and CD163 antibodies, and their correlation with each other and the observed histopathological changes was explored. The study used mature mammary tissue samples from 12 cats of different breeds and ages for diagnostic purposes. The examined biopsy materials with microvessel density (MVD), VEGF, HIF-1a, CD68, and CD163 antibodies showed no significant relationship between benign and malignant tumors (p>0.05). Furthermore, the study found no significant relationship between malignant tumors and their histological grade, tumor size, mitotic score, lenfovascular invasion (LVI), and necrosis features (p>0.05). It is believed that the low number of materials used in the study prevented the detection of a statistically significant difference between the IHC results of tumors and their histopathological and clinicopathological features. The study concluded that presenting the data would be appropriate to contribute to the fields of veterinary medicine and veterinary oncology.

References

  • Amorim, F.V., Souza, H.J.M., Ferreira, A.M.R., & Fonseca, A.B.M. (2006). Clinical, cytological and histopathological evaluation of mammary masses in cats from Rio de Janeiro, Brazil. Journal of Feline Medicine and Surgery, 8(6), 379-388. https://doi.org/10.1016/j.jfms.2006.04.004
  • Ates, M. B. (2019). Immunohistochemical investigation of effects of Nigella Sativa l. and Thymoquinone on aflatoxin biotransformation in liver in broilers (Publication No: 117O872)[Doctoral thesis, Selcuk Unıversity]. Balkwill, F.R., Capasso M., & Hagemann T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(pt23), 5591-6. https://doi.org/10.1242/jcs.116392
  • Choudhury, K. R., Yagle, K. J., Swanson, P. E., Krohn, K. A., & Rajendran, J. G. (2010). A robust automated measure of average antibody staining in immunohistochemistry images. The Journal of Histochemistry and Cytochemistry, 58(2), 95–107. https://doi.org/10.1369/jhc.2009.953554
  • Goldschmidt M.H., Peña L. & Zappulli V. (2017). Tumors of the mammary gland. In: Donald J. Meuten( 5th ed.),Tumors in Domestic Animals, (p.723-65). Ames, Iowa: Wiley/Blackwel Guner, E. (2020). Investigation of tumor microenvironment, hypoxia and angiogenesis by immunohistochemical and histopathological methods in mammary tumors of dogs and cats (Publication No: 648626)[Doctoral thesis, Selcuk Unıversity].
  • Guner, E. & Hatipoğlu, F. (2023). Investigation of tumor microenvironment, hypoxia and angiogenesis by immunohistochemical and histopathological methods in canine mammary tumors. Veterinarski Arhiv, 93 (6):665-682. https://doi.org/10.24099/vet.arhiv.2007
  • Hameed, K. A., Banumathi, A., & Ulaganathan, G. (2015). Performance evaluation of maximal separation techniques in immunohistochemical scoring of tissue images. Micron, 79, 29-35. https://doi.org/10.1016/j.micron.2015.07.013
  • Hayes, A. A., & Mooney, S. (1985). Feline mammary tumors. The Veterinary Clinics of North America. Small Animal Practice, 15(3), 513–520. https://doi.org/10.1016/s0195-5616(85)50054-6
  • Hayes Jr, H. M., Milne, K. L. & Mandell, C. P. (1981). Epidemiological features of feline mammary carcinoma. The Veterinary Record, 108(22), 476–479. https://doi.org/10.1136/vr.108.22.476
  • Islam, M. S., Matsumoto, M., Hidaka, R., Miyoshi, N. &Yasuda, N. (2012). Expression of NOS and VEGF in feline mammary tumours and their correlation with angiogenesis. The Veterinary Journal, 192: 338-344. https://doi.org/10.1016/j.tvjl.2011.08.032.
  • Jakab, C., Halász, J., Kiss, A., Schaff, Z., Szász, A.M., Rusvai, M., Tóth, Z.A., & Kulka, J. (2008). Evaluation of microvessel density (mvd) in canine mammary tumours by quantitative ımmunohistochemistry of the claudin-5 molecule. Acta Veterinaria Hungarica, 56(4), 495-510. https://doi.org/10.1556/AVet.56.2008.4.7.
  • Karabolovski, N., Pejcinovska, N., Dameski, P., Dodovski, P., Zdraveski, I & Stojanovski, S. (2020). Feline mammary tumors, prevalence and pathohıstologıcal classıfıcatıon. Horizons, 8, 61-68. https:/doi.org/10.20544/HORIZONS.B.03.1.16.P07
  • Madej, J.A., Madej, J. P., Dziegiel, P., Pula, B. & Nowak, M. (2013): Expression of hypoxia-inducible factor-1α and vascular density in mammary adenomas and adenocarcinomas in bitches. Acta Veterinaria Scandinavica, 55, 73. https://doi.org/10.1186/1751-0147-55-73.
  • Mantovani, A., & Locati, M. (2013). Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(7), 1478–1483. https://doi.org/10.1161/ATVBAHA.113.300168.
  • McNamara, D. A., Harmey, J. H., Walsh, T. N., Redmond, H. P. & Bouchier‐Hayes, D. J. (1998). Significance of angiogenesis in cancer therapy. British Journal of Surgery, 85(8), 1044-1055. McNeil, B., Papandreou, I., & Denko, N. C. (2016). Hypoxic reprograming of tumor metabolism, matching environmental supply with biosynthetic demand. Tumor Hypoxia, 147.
  • Millanta, F., Lazzeri, G., Vannozzi, I., Viacava, P. & Poli, A. (2002). Correlation of vascular endothelial growth factor expression to overall survival in feline invasive mammary carcinomas. Veterinary Pathology, 39, 690-696. https://doi.org/10.1354/vp.39-6-690.
  • Misdorp, W. (2002). Tumors of the mammary gland. In: Donald J. Meuten( 5th ed.),Tumors in Domestic Animals, (p.575-599). Ames, Iowa: Wiley/Blackwell. https://doi.org/10.1002/9780470376928.ch12
  • Monteiro, L. N., Rodrigues, M. A., Gomes, D. A., Salgado, B. S., & Cassali, G. D. (2018). Tumour-associated macrophages: Relation with progression and invasiveness, and assessment of M1/M2 macrophages in canine mammary tumours. The Veterinary Journal, 234, 119-125. https://doi.org/10.1016/j.tvjl.2018.02.016.
  • Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104(8), 2224-2234. https://doi.org/10.1182/blood-2004-03-1109
  • Murphy, S. (2008). Mammary tumours in dogs and cats. In Practice, 30(6), 334-339. https://doi.org/10.1136/inpract.30.6.334
  • Qiu, C. W., D. G. Lin, J. Q. Wang, C. Y. Li, & Deng, G. Z. (2008). Expression and significance of PTEN and VEGF in canine mammary gland tumours. Veterinary Research Communications, 32, 463. https://doi.org/10.1007/s11259-008-9049-7.
  • Rapisarda, A., & Melillo, G. (2009). Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resistance Updates, 12(3), 74-80. https://doi.org/10.1016/j.drup.2009.03.002. Raposo, T., Gregório, H., Pires, I., Prada, J. & Queiroga, F. L. (2014). Prognostic value of tumour‐associated macrophages in canine mammary tumours. Veterinary and Comparative Oncology, 12(1), 10-19. https://doi.org/10.1111/j.1476-5829.2012.00326.x.
  • Raposo, T. P., Pires, I., Carvalho, M. I., Prada, J., Argyle, D. J. & Queıroga, F. L. (2015). Tumour-associated macrophages are associated with vascular endothelial growth factor expression in canine mammary tumours. Veterinary and Comparative Oncology, 13, 464-474. https://doi.org/10.1111/vco.12067.
  • Restucci, B., De Vico ,G., & Maiolino, P. (2000). Evaluation of angiogenesis in canine mammary tumors by quantitative platelet endothelial cell adhesion molecule immunohistochemistry. Veterinary Pathology, 37(4), 297-301. https://doi.org/10.1354/vp.37-4-297
  • Restucci, B., Papparella, S., Maıolino, P. & De Vıco, G. (2002): Expression of vascular endothelial growth factor in canine mammary tumors. Veterinary Pathology, 39, 488-493. https://doi.org/10.1354/vp.39-4-488.
  • Shin, J. I., Lim, H. Y., Kim, H. W., Seung, B. J. & Sur, J. H. (2015). Analysis of hypoxia-inducible factor-1α expression relative to other key factors in malignant canine mammary tumours. Journal of Comparative Pathology, 153, 101-110. https://doi.org/10.1016/j.jcpa.2015.05.004.
  • Sleeckx, N., Van Brantegem, L., Van den Eynden, G., Fransen, E., Casteleyn, C., Van Cruchten, S. & Van Ginneken, C. (2014). Angiogenesis in canine mammary tumours: a morphometric and prognostic study. Journal of Comparative Pathology, 150(2-3), 175-183. https://doi.org/10.1016/j.jcpa.2013.09.005.
  • Sun, Z., Wang, S. & Zhao, R. C. (2014). The roles of mesenchymal stem cells in tumor inflammatory microenvironment. Journal of Hematology & Oncology, 7(1), 1-10.https://doi.org/10.1186/1756-8722-7-14
  • Vaupel, P. (2004). Tumor microenvironmental physiology and its implications for radiation oncology. In Seminars in Radiation Oncology (Vol. 14, No. 3, pp. 198-206). WB Saunders. https://doi.org/10.1016/j.semradonc.2004.04.008
  • Vaupel, P. & Mayer, A. (2007). Hypoxia in cancer: significance and impact on clinical outcome. Cancer and Metastasis Reviews, 26, 225-239.https://doi.org/10.1007/s10555-007-9055-1
  • Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. (1991). Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. New England Journal of Medicine, 324(1), 1-8. https://doi.org/10.1056/NEJM199101033240101
  • Zhang, Q. W., Liu, L., Gong, C. Y., Shi, H. S., Zeng, Y. H., Wang, X. Z. & Wei, Y. Q. (2012). Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS one, 7(12), e50946. https://doi.org/10.1371/journal.pone.0050946.
There are 31 citations in total.

Details

Primary Language English
Subjects Veterinary Pathology
Journal Section Research Articles
Authors

Erdinç Güner 0000-0003-2529-8475

Fatih Hatipoğlu 0000-0002-0103-5868

Publication Date December 31, 2024
Submission Date March 22, 2024
Acceptance Date October 23, 2024
Published in Issue Year 2024

Cite

APA Güner, E., & Hatipoğlu, F. (2024). Determination of hypoxia, angiogenesis and tumour microenvironment in feline mammary tumours by immunohistochemical and histopathological methods. Mediterranean Veterinary Journal, 9(3), 354-363. https://doi.org/10.24880/meditvetj.1611156