Research Article
BibTex RIS Cite
Year 2024, , 371 - 376, 31.12.2024
https://doi.org/10.24880/meditvetj.1611166

Abstract

References

  • Aragona, F., Cicero, N., Nava, V., Piccione, G., Giannetto, C., & Fazio, F. (2024). Blood and hoof biodistribution of some trace element (Lithium, Copper, Zinc, Strontium and, Lead) in horse from two different areas of Sicily. Journal of Trace Elements in Medicine and Biology, 82, 127378. Baltaci, A.K., Mogulkoc, R., & Baltaci S.B. (2019). The role of zinc in the endocrine system. Pakistan Journal Pharmaceutical Science, 32, 231-239.
  • Brugger, D., & Windisch, W. M. (2015). Environmental responsibilities of livestock feeding using trace mineral supplements. Animal Nutrition, 1, 113–118.
  • Coenen, M. (2013). Macro and Trace elements in equine nutrition. In: R.J. Geor, P. A. Harris, & M. Coenen (Eds.), Equine Applied and Clinical Nutrition (pp. 190–228). Saunders: Philadelphia, PA, USA
  • Cymbaluk, N. F., & Smart, M. E. (1993). A review of possible metabolic relationships of copper to equine bone disease, Equine Veterinary Journal. Supplement, 16, 19-26
  • Dowler, L. E., Siciliano, P. D. (2009). Prediction of hourly pasture dry matter intake in horses. Journal of Equine Veterinary Science, 29, 354-355.
  • Fowler, A. L., Brummer-Holder M., &Dawson, K. A. (2020). Trace mineral leaching from equine compost. Sustainability, 12(17), 7157.
  • Fowler, A. L., Brummer-Holder, M., & and Dawson K. A. (2019a). Trace Mineral Leaching from Equine Compost. Sustainability, 12, 7157.
  • Fowler, A. L., Brümmer-Holder, M., & Dawson, K. A. (2019). Dietary trace mineral level and source affect fecal bacterial mineral incorporation and mineral leaching potential of equine feces. Sustainability, 11, 7107.
  • Harford, A. J., Mooney, T. J., Trenfield, M. A. & Van Dam, R. A. (2015). Manganese toxicity to tropical freshwater species in low hardness water. Environmental Toxicology and Chemistry, 3412, 2856-2863.
  • Harper, M., Swinker, A., Staniar, W., & Welker, A. (2009). Ration evaluation of Chesapeake Bay watershed horse farms from a nutrient management perspective. Journal of Equine Veterinary Science, 529, 401-402.
  • Hintz, H. F. (1996). Mineral requirements of growing horses. Pferdeheilkunde, 12(3), 303-306.
  • Hoyt, J. K., Potter, G. D., Greenead, L. W., & Anderson., J. G. (1995). Copper balance in miniature horses fed varying amounts of zinc. Journal of Equine Veterinary Science, 15, 357-359.
  • Hsu, J. H., & Lo, S. L. (2000). Characterization and extractability of copper, manganese, and zinc in swine manure composts. Journal of Environmental Quality, 292, 447-453.
  • IBM Corp. Released 2021. IBM SPPS Statistics for Windows. Version 28.0. Armonk, NY: IBM Corp.
  • Jackson, S.G. (1197). Trace minerals for the performance horse: known biochemical roles and estimates of requirements. Irish Veterinary Journal, 50, 668-674.
  • Kaya Karasu, G., Huntington, P., Iben, C., & Murray, J. A. (2018). Feeding and management practices for racehorses in Turkey. Journal of Equine Veterinary Science 61, 108-113.
  • Kienzle, E., Zeyner, A. (2010). The development of a metabolizable energy system for horses. Journal of Animal Physiology Animal Nutrition, 94:, 231-240.
  • Kirchgeßner, M. (2004): Tierernährung, 11. Auflage, DLG-Verlag
  • Lawrence, L. A., Ott, E. A., Asquith, R. L., & Miller, G. J. (1987). Influence of dietary iron on growth, tissue mineral composition, apparent phosphorus absorption, and chemical properties of bone. Proceedings of the Nutrition Society, 10, 563-568.
  • Mertz, W. (1986). Trace Elements in Human and animal nutrition, 5th edition. Beltsville, Maryland Academic press.
  • Meyer, H. (1994). Kupferstoffwechsel und Kupferbedarf beim Pferd. Übersichten zur. Tierernährung, 22, 363-394.
  • Meyer, H., Coenen, M. (2002) Pferdefütterung. Parey Verlag, Berlin
  • Mitchell, L. M., Robinson, J. J., Watt, R. G., McEvoy, T. G., Ashworth, C. J., Rooke, J. A., & Dwyer, C.M. (2007). Effects of cobalt/vitamin B12 status in ewes on ovum development and lamb viability at birth. Reproduction Fertility and Development, 19, 553-562.
  • Mørkeberg, J. (2013). Blood manipulation: current challenges from an anti-doping perspective. Hamatology, 1, 627-631.
  • Nagpal, N. (2004). Water Quality Guidelines for Cobalt: Water Protection Section, Water, Air and Climate Change Branch; Technical Report; Ministry of Water, Land, and Air Protection: Victoria, BC, Canada.
  • Nijs, A. C. M., Driesprong, A., Hollander, H. A., Poorter, L. R. M., Verweij, W. H. J., Vonk, J. A., & Zwart D (2008). Risico’s van toxische stoffen in de Nederlandse oppervlaktewateren. RIVM (National Institute for Public and Environment) report 607340001.
  • NRC (2007). National research council. The Nutrient Requirement of Horses. 6th revised edition Washington, USA. National academic press.
  • Paßlack, N., Bömmel-Wegmanna, S., Vahjena, W., & Zenteka, J. (2022). Impact of dietary zinc chloride hydroxide and zinc methionine on the faecal microbiota of healthy adult horses and ponies. Journal of Equine Veterinary Science, 110, 103804.
  • Regulation (EU) 2018/848 of the European Parliament and of the council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007
  • Semenza, G. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721-732.
  • Annete, C. J. (2013). Pastures and pastures management. In: R. J. Geor, P. A. Harris, & M. Coenen (Eds.), Equine Applied and Clinical Nutrition (pp. 332-349). Philadelphia, PA, USA, Saunders press.
  • Vos, J. H., & Janssen M. P. M. (2008). EU-wide control measures to reduce pollution from WFD relevant substances: Copper and zinc in the Netherlands. RIVM (National Institute for Public and Environment) report 607633002
  • Westendorf, W. (2004). Horses and manure. Rutgers Equine Science Center Publications: Factsheet 036, Rutgers, New Brunswick
  • Wichert, B., Kreyenberg, K., & Kienzle, E. (2002). Serum response after oral supplementation of different zinc compounds in horses. Journal of Nutrition, 132(6), 1769-70.
  • Xiong, Y., Cui, B., He, Z., Liu, S., Wu, Q., Yi, H., Zhao, F., Jiang, Z., Hu, S., & Wang L. (2023). Dietary replacement of inorganic trace minerals with lower levels of organic trace minerals leads to enhanced antioxidant capacity, nutrient digestibility, and reduced fecal mineral excretion in growing-finishing pigs. Frontiers Veterinary Science 10, 1142054.

The effect of diet composition on the digestibility and fecal excretion of trace minerals in horses

Year 2024, , 371 - 376, 31.12.2024
https://doi.org/10.24880/meditvetj.1611166

Abstract

This study investigates the correlation between dietary intake of these trace minerals and their fecal excretion rates, aiming to enhance our understanding of equine mineral metabolism and improve dietary recommendations. The criteria for selection included healthy horses aged 4 to 14, weighing 400 to 600 kg, with a good body condition score (BCS, 3/5) across 14 yards in the Netherlands. Data on yard type, size, and location, as well as horse demographics (age, sex, breed, weight), were collected. Each horse’s diet was analyzed concerning daily nutritional intake and requirements according to National Research Council (NRC). Fecal samples were randomly collected from stables (n=14) for dietary analysis and stored in three labeled jars. Samples, approximately 200 g each, were frozen at -20°C and later analyzed for cobalt (Co), copper (Cu), manganese (Mn), and zinc (Zn) using inductively coupled plasma mass spectroscopy (ICP-MS). Among the 14 horses, all were geldings, with one being a cold blood and another a Welsh pony, while the rest were warmbloods. Their median age was 10 years, mean body weight (BW) 506 ± 82.3 kg. Most horses grazed, averaging 8.6 ± 8.5 h/day. All received commercial concentrate feed, with nine also receiving supplements. Energy intakes varied, with ten horses consuming more than required. Trace mineral intake was classified by the NRC; two horses had high Cu intake. Manganese intake exceeded NRC recommendations significantly (618.6 ± 125.1 mg vs. 1403.8 ± 312.7 mg), while Co intake was 2.3 ± 1.6 mg against a requirement of 0.8 ± 0.2 mg. Manganese excretion in feces was highest (459.1 ± 386.4 mg/day), followed by Zn (58.3 ± 46.0 mg), Cu (2.7 ± 3.2 mg), and Co (1.5 ± 0.4 mg). This study emphasizes the need for tailored diets to prevent excess mineral intake in horses, which mainly originates from concentrate feed and supplements. Further research with a larger sample size is necessary for a deeper understanding.

References

  • Aragona, F., Cicero, N., Nava, V., Piccione, G., Giannetto, C., & Fazio, F. (2024). Blood and hoof biodistribution of some trace element (Lithium, Copper, Zinc, Strontium and, Lead) in horse from two different areas of Sicily. Journal of Trace Elements in Medicine and Biology, 82, 127378. Baltaci, A.K., Mogulkoc, R., & Baltaci S.B. (2019). The role of zinc in the endocrine system. Pakistan Journal Pharmaceutical Science, 32, 231-239.
  • Brugger, D., & Windisch, W. M. (2015). Environmental responsibilities of livestock feeding using trace mineral supplements. Animal Nutrition, 1, 113–118.
  • Coenen, M. (2013). Macro and Trace elements in equine nutrition. In: R.J. Geor, P. A. Harris, & M. Coenen (Eds.), Equine Applied and Clinical Nutrition (pp. 190–228). Saunders: Philadelphia, PA, USA
  • Cymbaluk, N. F., & Smart, M. E. (1993). A review of possible metabolic relationships of copper to equine bone disease, Equine Veterinary Journal. Supplement, 16, 19-26
  • Dowler, L. E., Siciliano, P. D. (2009). Prediction of hourly pasture dry matter intake in horses. Journal of Equine Veterinary Science, 29, 354-355.
  • Fowler, A. L., Brummer-Holder M., &Dawson, K. A. (2020). Trace mineral leaching from equine compost. Sustainability, 12(17), 7157.
  • Fowler, A. L., Brummer-Holder, M., & and Dawson K. A. (2019a). Trace Mineral Leaching from Equine Compost. Sustainability, 12, 7157.
  • Fowler, A. L., Brümmer-Holder, M., & Dawson, K. A. (2019). Dietary trace mineral level and source affect fecal bacterial mineral incorporation and mineral leaching potential of equine feces. Sustainability, 11, 7107.
  • Harford, A. J., Mooney, T. J., Trenfield, M. A. & Van Dam, R. A. (2015). Manganese toxicity to tropical freshwater species in low hardness water. Environmental Toxicology and Chemistry, 3412, 2856-2863.
  • Harper, M., Swinker, A., Staniar, W., & Welker, A. (2009). Ration evaluation of Chesapeake Bay watershed horse farms from a nutrient management perspective. Journal of Equine Veterinary Science, 529, 401-402.
  • Hintz, H. F. (1996). Mineral requirements of growing horses. Pferdeheilkunde, 12(3), 303-306.
  • Hoyt, J. K., Potter, G. D., Greenead, L. W., & Anderson., J. G. (1995). Copper balance in miniature horses fed varying amounts of zinc. Journal of Equine Veterinary Science, 15, 357-359.
  • Hsu, J. H., & Lo, S. L. (2000). Characterization and extractability of copper, manganese, and zinc in swine manure composts. Journal of Environmental Quality, 292, 447-453.
  • IBM Corp. Released 2021. IBM SPPS Statistics for Windows. Version 28.0. Armonk, NY: IBM Corp.
  • Jackson, S.G. (1197). Trace minerals for the performance horse: known biochemical roles and estimates of requirements. Irish Veterinary Journal, 50, 668-674.
  • Kaya Karasu, G., Huntington, P., Iben, C., & Murray, J. A. (2018). Feeding and management practices for racehorses in Turkey. Journal of Equine Veterinary Science 61, 108-113.
  • Kienzle, E., Zeyner, A. (2010). The development of a metabolizable energy system for horses. Journal of Animal Physiology Animal Nutrition, 94:, 231-240.
  • Kirchgeßner, M. (2004): Tierernährung, 11. Auflage, DLG-Verlag
  • Lawrence, L. A., Ott, E. A., Asquith, R. L., & Miller, G. J. (1987). Influence of dietary iron on growth, tissue mineral composition, apparent phosphorus absorption, and chemical properties of bone. Proceedings of the Nutrition Society, 10, 563-568.
  • Mertz, W. (1986). Trace Elements in Human and animal nutrition, 5th edition. Beltsville, Maryland Academic press.
  • Meyer, H. (1994). Kupferstoffwechsel und Kupferbedarf beim Pferd. Übersichten zur. Tierernährung, 22, 363-394.
  • Meyer, H., Coenen, M. (2002) Pferdefütterung. Parey Verlag, Berlin
  • Mitchell, L. M., Robinson, J. J., Watt, R. G., McEvoy, T. G., Ashworth, C. J., Rooke, J. A., & Dwyer, C.M. (2007). Effects of cobalt/vitamin B12 status in ewes on ovum development and lamb viability at birth. Reproduction Fertility and Development, 19, 553-562.
  • Mørkeberg, J. (2013). Blood manipulation: current challenges from an anti-doping perspective. Hamatology, 1, 627-631.
  • Nagpal, N. (2004). Water Quality Guidelines for Cobalt: Water Protection Section, Water, Air and Climate Change Branch; Technical Report; Ministry of Water, Land, and Air Protection: Victoria, BC, Canada.
  • Nijs, A. C. M., Driesprong, A., Hollander, H. A., Poorter, L. R. M., Verweij, W. H. J., Vonk, J. A., & Zwart D (2008). Risico’s van toxische stoffen in de Nederlandse oppervlaktewateren. RIVM (National Institute for Public and Environment) report 607340001.
  • NRC (2007). National research council. The Nutrient Requirement of Horses. 6th revised edition Washington, USA. National academic press.
  • Paßlack, N., Bömmel-Wegmanna, S., Vahjena, W., & Zenteka, J. (2022). Impact of dietary zinc chloride hydroxide and zinc methionine on the faecal microbiota of healthy adult horses and ponies. Journal of Equine Veterinary Science, 110, 103804.
  • Regulation (EU) 2018/848 of the European Parliament and of the council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007
  • Semenza, G. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721-732.
  • Annete, C. J. (2013). Pastures and pastures management. In: R. J. Geor, P. A. Harris, & M. Coenen (Eds.), Equine Applied and Clinical Nutrition (pp. 332-349). Philadelphia, PA, USA, Saunders press.
  • Vos, J. H., & Janssen M. P. M. (2008). EU-wide control measures to reduce pollution from WFD relevant substances: Copper and zinc in the Netherlands. RIVM (National Institute for Public and Environment) report 607633002
  • Westendorf, W. (2004). Horses and manure. Rutgers Equine Science Center Publications: Factsheet 036, Rutgers, New Brunswick
  • Wichert, B., Kreyenberg, K., & Kienzle, E. (2002). Serum response after oral supplementation of different zinc compounds in horses. Journal of Nutrition, 132(6), 1769-70.
  • Xiong, Y., Cui, B., He, Z., Liu, S., Wu, Q., Yi, H., Zhao, F., Jiang, Z., Hu, S., & Wang L. (2023). Dietary replacement of inorganic trace minerals with lower levels of organic trace minerals leads to enhanced antioxidant capacity, nutrient digestibility, and reduced fecal mineral excretion in growing-finishing pigs. Frontiers Veterinary Science 10, 1142054.
There are 35 citations in total.

Details

Primary Language English
Subjects Animal Nutrition and Nutritional Diseases
Journal Section Research Articles
Authors

Gülşah Karasu Kaya This is me 0009-0000-4741-2545

Hıdır Gümüş 0000-0001-7077-1036

Publication Date December 31, 2024
Submission Date May 23, 2024
Acceptance Date November 27, 2024
Published in Issue Year 2024

Cite

APA Karasu Kaya, G., & Gümüş, H. (2024). The effect of diet composition on the digestibility and fecal excretion of trace minerals in horses. Mediterranean Veterinary Journal, 9(3), 371-376. https://doi.org/10.24880/meditvetj.1611166