Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 2, 299 - 305, 31.08.2024
https://doi.org/10.24880/meditvetj.1541540

Abstract

References

  • Abdel-Wahab, W. M., & Moussa, F. I. (2019). Neuroprotective effect of N-acetylcysteine against cisplatin-induced toxicity in rat brain by modulation of oxidative stress and inflammation. Drug design, development and therapy, 13, 1155-1162. https://doi.org/10.2147/dddt.s191240
  • Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews Cancer, 7(3), 192–201. https://doi.org/10.1038/nrc2073
  • Andryszak, P., Wiłkość, M., Żurawski, B., & Izdebski, P. (2017). Verbal memory in breast cancer patients treated with chemotherapy with doxorubicin and cyclophosphamide. European Journal of Cancer Care, 27(1), 1-11. https://doi.org/10.1111/ecc.12749
  • Cao, L., Li, L., & Zuo, Z. (2012). N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice. Neuroscience, 220, 85–89. https://doi.org/10.1016/j.neuroscience.2012.06.044
  • Chen, X., Qian, Y., Wang, X., Tang, Z., Xu, J., Lin, H., Yang, Z., Song, X., Lu, D., Guo, J., Bian, L., Li, Y., Zhou, L., & Deng, X. (2018). Nurr1 promotes neurogenesis of dopaminergic neuron and represses inflammatory factors in the transwell coculture system of neural stem cells and microglia. CNS Neuroscience & Therapeutics, 24(9), 790–800. https://doi.org/10.1111/cns.12825
  • Cheruku, S. P., Ramalingayya, G. V., Chamallamudi, M. R., Biswas, S., Nandakumar, K., Nampoothiri, M., Gourishetti, K., & Kumar, N. (2017). Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology, 70(1), 245–259. https://doi.org/10.1007/s10616-017-0138-8
  • Dean, O., Giorlando, F., & Berk, M. (2011). N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. Journal of Psychiatry & Neuroscience, 36(2), 78–86. https://doi.org/10.1503/jpn.100057
  • Du, J., Zhang, A., Li, J., Liu, X., Wu, S., Wang, B., Wang, Y., & Jia, H. (2021). Doxorubicin-Induced Cognitive Impairment: The Mechanistic Insights. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.673340
  • El-Hussein, A., Manoto, S. L., Ombinda-Lemboumba, S., Alrowaili, Z. A., & Mthunzi-Kufa, P. (2020). A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment. Anti-Cancer Agents in Medicinal Chemistry, 21(2), 149–161. https://doi.org/10.2174/1871520620666200403144945
  • Fan, C., Long, Y., Wang, L., Liu, X., Liu, Z., Lan, T., Li,Y., & Yu, S. Y. (2020). N-Acetylcysteine Rescues Hippocampal Oxidative Stress-Induced Neuronal Injury via Suppression of p38/JNK Signaling in Depressed Rats. Frontiers in Cellular Neuroscience, 14, 1-11. https://doi.org/10.3389/fncel.2020.554613
  • Frye, R. E., Andrus, J. P., Lemley, K. V., De Rosa, S. C., Ghezzi, P., Holmgren, A., Jones, D., Jahoor, F., Kopke, R., Cotgreave, I., Bottiglieri, T., Kaplowitz, N., Nakamura, H., Staal, F., Ela, S. W., Atkuri, K. R., Tirouvanziam, R., Heydari, K., Sahaf, B., … Herzenberg, L. A. (2018). Pharmacology, Formulations, and Adverse Effects. The Therapeutic Use of N-Acetylcysteine (NAC) in Medicine, 387–394. https://doi.org/10.1007/978-981-10-5311-5_21
  • Gil-Martínez, A.L., Cuenca, L., Sánchez, C., Estrada, C., Fernández-Villalba, E., & Herrero, M. T. (2018). Effect of NAC treatment and physical activity on neuroinflammation in subchronic Parkinsonism; is physical activity essential? Journal of Neuroinflammation, 15, 1-13. https://doi.org/10.1186/s12974-018-1357-4
  • Habbas, S., Santello, M., Becker, D., Stubbe, H., Zappia, G., Liaudet, N., Klaus, F. R., Kollias, G., Fontana, A., Pryce, C. R., Suter, T., & Volterra, A. (2015). Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling. Cell, 163(7), 1730–1741. https://doi.org/10.1016/j.cell.2015.11.023
  • Hernandez-Aya, L. F., & Gonzalez-Angulo, A. M. (2013). Adjuvant Systemic Therapies in Breast Cancer. Surgical Clinics of North America, 93(2), 473–491. https://doi.org/10.1016/j.suc.2012.12.002
  • Huot, P., Levesque, M., & Parent, A. (2006). The fate of striatal dopaminergic neurons in Parkinson’s disease and Huntington’s chorea. Brain, 130(1), 222–232. https://doi.org/10.1093/brain/awl332
  • Keeney, J. T. R., Ren, X., Warrier, G., Noel, T., Powell, D. K., Brelsfoard, J. M., Sultana, R., Saatman, K. E., St. Clair, D. K., & Butterfield, D. A. (2018). Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget, 9(54), 30324–30339. https://doi.org/10.18632/oncotarget.25718
  • Kitamura, H., Tsukamoto, T., Shibata, T., Masumori, N., Fujimoto, H., Hirao, Y., Fujimoto, K., Kitamura, Y., Tomita, Y., Tobisu, K., Niwakawa, M., Naito, S., Eto, M., & Kakehi, Y. (2014). Randomised phase III study of neoadjuvant chemotherapy with methotrexate, doxorubicin, vinblastine and cisplatin followed by radical cystectomy compared with radical cystectomy alone for muscle-invasive bladder cancer: Japan Clinical Oncology Group Study JCOG0209. Annals of Oncology, 25(6), 1192–1198. https://doi.org/10.1093/annonc/mdu126
  • Kitamura, Y., Ushio, S., Sumiyoshi, Y., Wada, Y., Miyazaki, I., Asanuma, M., & Sendo, T. (2021). N-Acetylcysteine Attenuates the Anxiety-Like Behavior and Spatial Cognition Impairment Induced by Doxorubicin and Cyclophosphamide Combination Treatment in Rats. Pharmacology, 106(5–6), 286–293. https://doi.org/10.1159/000512117
  • Kwatra, M., Jangra, A., Mishra, M., Sharma, Y., Ahmed, S., Ghosh, P., Kumar, V., Vohora, D., & Khanam, R. (2016). Naringin and Sertraline Ameliorate Doxorubicin-Induced Behavioral Deficits Through Modulation of Serotonin Level and Mitochondrial Complexes Protection Pathway in Rat Hippocampus. Neurochemical Research, 41(9), 2352–2366. https://doi.org/10.1007/s11064-016-1949-2
  • Lim, I., Joung, H.Y., Yu, A. R., Shim, I., & Kim, J. S. (2016). PET Evidence of the Effect of Donepezil on Cognitive Performance in an Animal Model of Chemobrain. BioMed Research International, 2016, 1–7. https://doi.org/10.1155/2016/6945415
  • Mehta, M., & Riedel, W. (2006). Dopaminergic Enhancement of Cognitive Function. Current Pharmaceutical Design, 12(20), 2487–2500. https://doi.org/10.2174/138161206777698891
  • Mohammed, W. I., Radwan, R. A., & Elsayed, H. M. (2019). Prophylactic and Ameliorative Effect of N-Acetylcysteine on Doxorubicin-Induced Neurotoxicity in Wister Rats. Egyptian Journal of Basic and Clinical Pharmacology, 9(14), 1-16. https://doi.org/10.32527/2019/101396
  • Park, H.S., Kim, C.J., Kwak, H.B., No, M.H., Heo, J.W., & Kim, T.W. (2018). Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology, 133, 451–461. https://doi.org/10.1016/j.neuropharm.2018.02.013
  • Perlmann, T., & Wallén-Mackenzie, Å. (2004). Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell and Tissue Research, 318(1), 45–52. https://doi.org/10.1007/s00441-004-0974-7
  • Prakash, A., Kalra, J. K., & Kumar, A. (2014). Neuroprotective effect of N-acetyl cysteine against streptozotocin-induced memory dysfunction and oxidative damage in rats. Journal of Basic and Clinical Physiology and Pharmacology, 26(1), 13–23. https://doi.org/10.1515/jbcpp-2013-0150
  • Raffa, R. B., Duong, P. V., Finney, J., Garber, D. A., Lam, L. M., Mathew, S. S., Patel, N. N., Plaskett, K. C., Shah, M., & Jen Weng, H.-F. (2006). Is “chemo-fog’/’chemo-brain” caused by cancer chemotherapy? Journal of Clinical Pharmacy and Therapeutics, 31(2), 129–138. https://doi.org/10.1111/j.1365-2710.2006.00726.x
  • Rau, W. C. (1992). The Good Sociology Departments: Will We Ever Find Them? Will We Even Try? Teaching Sociology, 20(2), 165-170. https://doi.org/10.2307/1317402
  • Seigers, R., & Fardell, J. E. (2011). Neurobiological basis of chemotherapy-induced cognitive impairment: A review of rodent research. Neuroscience & Biobehavioral Reviews, 35(3), 729–741. https://doi.org/10.1016/j.neubiorev.2010.09.006
  • Skvarc, D. R., Dean, O. M., Byrne, L. K., Gray, L., Lane, S.,Lewis, M., Fernandes, B. S., Berk, M., & Marriott, A. (2017). The effect of N-acetylcysteine (NAC) on human cognition – A systematic review. Neuroscience & Biobehavioral Reviews, 78, 44–56. https://doi.org/10.1016/j.neubiorev.2017.04.013
  • Song, Q., Feng, Y., Wang, L., Shen, J., Li, Y., Fan, C., Wang, P., & Yu, S. Y. (2019). COX-2 inhibition rescues depression-like behaviors via suppressing glial activation, oxidative stress and neuronal apoptosis in rats. Neuropharmacology, 160, 107779. https://doi.org/10.1016/j.neuropharm.2019.107779
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Tangpong, J., Miriyala, S., Noel, T., Sinthupibulyakit, C., Jungsuwadee, P., & St. Clair, D. K. (2011). Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia Mangostana. Neuroscience, 175, 292–299. https://doi.org/10.1016/j.neuroscience.2010.11.007

Neuroprotective role of n-acetylcysteine (NAC): countering doxorubicin neurotoxicity via TH, Nurr1, and iNOS expression

Year 2024, Volume: 9 Issue: 2, 299 - 305, 31.08.2024
https://doi.org/10.24880/meditvetj.1541540

Abstract

Chemotherapy is an effective treatment for cancer, but it can cause cognitive disorders broadly referred to as “chemobrain.” One of the most commonly used chemotherapeutics, doxorubicin (DOX), has been associated with the potential for brain damage and cognitive dysfunction. N-acetylcysteine (NAC) has been identified as a potential brain protector with antiapoptotic, antioxidant, and anti-inflammatory effects. The objective of this study was to investigate the potential protective effect of NAC against DOX-induced brain damage. Female Wistar albino rats were randomly assigned to one of three groups: control, DOX, or NAC prophylaxis. Brain samples were collected for histopathological and immunohistochemical analyses, with a particular focus on regions that are crucial for cognition and memory. The DOX group exhibited significant histopathological changes, including neuronal shrinkage, degeneration, and necrosis in the striatum, hippocampal region, and cerebral cortex. Immunohistochemical analysis revealed the presence of neuroinflammation and neurodegeneration, with an increase in inducible nitric oxide synthetase (iNOS) immunopositivity. Administration of NAC effectively reduced iNOS immunopositivity, neuronal damage, degeneration, and necrosis in the prophylaxis group. Among the brain regions examined, the prophylaxis group demonstrated the most effective protection in the hippocampal region. Therefore, NAC has the potential to protect against or alleviate DOX-induced cognitive impairments.

References

  • Abdel-Wahab, W. M., & Moussa, F. I. (2019). Neuroprotective effect of N-acetylcysteine against cisplatin-induced toxicity in rat brain by modulation of oxidative stress and inflammation. Drug design, development and therapy, 13, 1155-1162. https://doi.org/10.2147/dddt.s191240
  • Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews Cancer, 7(3), 192–201. https://doi.org/10.1038/nrc2073
  • Andryszak, P., Wiłkość, M., Żurawski, B., & Izdebski, P. (2017). Verbal memory in breast cancer patients treated with chemotherapy with doxorubicin and cyclophosphamide. European Journal of Cancer Care, 27(1), 1-11. https://doi.org/10.1111/ecc.12749
  • Cao, L., Li, L., & Zuo, Z. (2012). N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice. Neuroscience, 220, 85–89. https://doi.org/10.1016/j.neuroscience.2012.06.044
  • Chen, X., Qian, Y., Wang, X., Tang, Z., Xu, J., Lin, H., Yang, Z., Song, X., Lu, D., Guo, J., Bian, L., Li, Y., Zhou, L., & Deng, X. (2018). Nurr1 promotes neurogenesis of dopaminergic neuron and represses inflammatory factors in the transwell coculture system of neural stem cells and microglia. CNS Neuroscience & Therapeutics, 24(9), 790–800. https://doi.org/10.1111/cns.12825
  • Cheruku, S. P., Ramalingayya, G. V., Chamallamudi, M. R., Biswas, S., Nandakumar, K., Nampoothiri, M., Gourishetti, K., & Kumar, N. (2017). Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology, 70(1), 245–259. https://doi.org/10.1007/s10616-017-0138-8
  • Dean, O., Giorlando, F., & Berk, M. (2011). N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. Journal of Psychiatry & Neuroscience, 36(2), 78–86. https://doi.org/10.1503/jpn.100057
  • Du, J., Zhang, A., Li, J., Liu, X., Wu, S., Wang, B., Wang, Y., & Jia, H. (2021). Doxorubicin-Induced Cognitive Impairment: The Mechanistic Insights. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.673340
  • El-Hussein, A., Manoto, S. L., Ombinda-Lemboumba, S., Alrowaili, Z. A., & Mthunzi-Kufa, P. (2020). A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment. Anti-Cancer Agents in Medicinal Chemistry, 21(2), 149–161. https://doi.org/10.2174/1871520620666200403144945
  • Fan, C., Long, Y., Wang, L., Liu, X., Liu, Z., Lan, T., Li,Y., & Yu, S. Y. (2020). N-Acetylcysteine Rescues Hippocampal Oxidative Stress-Induced Neuronal Injury via Suppression of p38/JNK Signaling in Depressed Rats. Frontiers in Cellular Neuroscience, 14, 1-11. https://doi.org/10.3389/fncel.2020.554613
  • Frye, R. E., Andrus, J. P., Lemley, K. V., De Rosa, S. C., Ghezzi, P., Holmgren, A., Jones, D., Jahoor, F., Kopke, R., Cotgreave, I., Bottiglieri, T., Kaplowitz, N., Nakamura, H., Staal, F., Ela, S. W., Atkuri, K. R., Tirouvanziam, R., Heydari, K., Sahaf, B., … Herzenberg, L. A. (2018). Pharmacology, Formulations, and Adverse Effects. The Therapeutic Use of N-Acetylcysteine (NAC) in Medicine, 387–394. https://doi.org/10.1007/978-981-10-5311-5_21
  • Gil-Martínez, A.L., Cuenca, L., Sánchez, C., Estrada, C., Fernández-Villalba, E., & Herrero, M. T. (2018). Effect of NAC treatment and physical activity on neuroinflammation in subchronic Parkinsonism; is physical activity essential? Journal of Neuroinflammation, 15, 1-13. https://doi.org/10.1186/s12974-018-1357-4
  • Habbas, S., Santello, M., Becker, D., Stubbe, H., Zappia, G., Liaudet, N., Klaus, F. R., Kollias, G., Fontana, A., Pryce, C. R., Suter, T., & Volterra, A. (2015). Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling. Cell, 163(7), 1730–1741. https://doi.org/10.1016/j.cell.2015.11.023
  • Hernandez-Aya, L. F., & Gonzalez-Angulo, A. M. (2013). Adjuvant Systemic Therapies in Breast Cancer. Surgical Clinics of North America, 93(2), 473–491. https://doi.org/10.1016/j.suc.2012.12.002
  • Huot, P., Levesque, M., & Parent, A. (2006). The fate of striatal dopaminergic neurons in Parkinson’s disease and Huntington’s chorea. Brain, 130(1), 222–232. https://doi.org/10.1093/brain/awl332
  • Keeney, J. T. R., Ren, X., Warrier, G., Noel, T., Powell, D. K., Brelsfoard, J. M., Sultana, R., Saatman, K. E., St. Clair, D. K., & Butterfield, D. A. (2018). Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget, 9(54), 30324–30339. https://doi.org/10.18632/oncotarget.25718
  • Kitamura, H., Tsukamoto, T., Shibata, T., Masumori, N., Fujimoto, H., Hirao, Y., Fujimoto, K., Kitamura, Y., Tomita, Y., Tobisu, K., Niwakawa, M., Naito, S., Eto, M., & Kakehi, Y. (2014). Randomised phase III study of neoadjuvant chemotherapy with methotrexate, doxorubicin, vinblastine and cisplatin followed by radical cystectomy compared with radical cystectomy alone for muscle-invasive bladder cancer: Japan Clinical Oncology Group Study JCOG0209. Annals of Oncology, 25(6), 1192–1198. https://doi.org/10.1093/annonc/mdu126
  • Kitamura, Y., Ushio, S., Sumiyoshi, Y., Wada, Y., Miyazaki, I., Asanuma, M., & Sendo, T. (2021). N-Acetylcysteine Attenuates the Anxiety-Like Behavior and Spatial Cognition Impairment Induced by Doxorubicin and Cyclophosphamide Combination Treatment in Rats. Pharmacology, 106(5–6), 286–293. https://doi.org/10.1159/000512117
  • Kwatra, M., Jangra, A., Mishra, M., Sharma, Y., Ahmed, S., Ghosh, P., Kumar, V., Vohora, D., & Khanam, R. (2016). Naringin and Sertraline Ameliorate Doxorubicin-Induced Behavioral Deficits Through Modulation of Serotonin Level and Mitochondrial Complexes Protection Pathway in Rat Hippocampus. Neurochemical Research, 41(9), 2352–2366. https://doi.org/10.1007/s11064-016-1949-2
  • Lim, I., Joung, H.Y., Yu, A. R., Shim, I., & Kim, J. S. (2016). PET Evidence of the Effect of Donepezil on Cognitive Performance in an Animal Model of Chemobrain. BioMed Research International, 2016, 1–7. https://doi.org/10.1155/2016/6945415
  • Mehta, M., & Riedel, W. (2006). Dopaminergic Enhancement of Cognitive Function. Current Pharmaceutical Design, 12(20), 2487–2500. https://doi.org/10.2174/138161206777698891
  • Mohammed, W. I., Radwan, R. A., & Elsayed, H. M. (2019). Prophylactic and Ameliorative Effect of N-Acetylcysteine on Doxorubicin-Induced Neurotoxicity in Wister Rats. Egyptian Journal of Basic and Clinical Pharmacology, 9(14), 1-16. https://doi.org/10.32527/2019/101396
  • Park, H.S., Kim, C.J., Kwak, H.B., No, M.H., Heo, J.W., & Kim, T.W. (2018). Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology, 133, 451–461. https://doi.org/10.1016/j.neuropharm.2018.02.013
  • Perlmann, T., & Wallén-Mackenzie, Å. (2004). Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell and Tissue Research, 318(1), 45–52. https://doi.org/10.1007/s00441-004-0974-7
  • Prakash, A., Kalra, J. K., & Kumar, A. (2014). Neuroprotective effect of N-acetyl cysteine against streptozotocin-induced memory dysfunction and oxidative damage in rats. Journal of Basic and Clinical Physiology and Pharmacology, 26(1), 13–23. https://doi.org/10.1515/jbcpp-2013-0150
  • Raffa, R. B., Duong, P. V., Finney, J., Garber, D. A., Lam, L. M., Mathew, S. S., Patel, N. N., Plaskett, K. C., Shah, M., & Jen Weng, H.-F. (2006). Is “chemo-fog’/’chemo-brain” caused by cancer chemotherapy? Journal of Clinical Pharmacy and Therapeutics, 31(2), 129–138. https://doi.org/10.1111/j.1365-2710.2006.00726.x
  • Rau, W. C. (1992). The Good Sociology Departments: Will We Ever Find Them? Will We Even Try? Teaching Sociology, 20(2), 165-170. https://doi.org/10.2307/1317402
  • Seigers, R., & Fardell, J. E. (2011). Neurobiological basis of chemotherapy-induced cognitive impairment: A review of rodent research. Neuroscience & Biobehavioral Reviews, 35(3), 729–741. https://doi.org/10.1016/j.neubiorev.2010.09.006
  • Skvarc, D. R., Dean, O. M., Byrne, L. K., Gray, L., Lane, S.,Lewis, M., Fernandes, B. S., Berk, M., & Marriott, A. (2017). The effect of N-acetylcysteine (NAC) on human cognition – A systematic review. Neuroscience & Biobehavioral Reviews, 78, 44–56. https://doi.org/10.1016/j.neubiorev.2017.04.013
  • Song, Q., Feng, Y., Wang, L., Shen, J., Li, Y., Fan, C., Wang, P., & Yu, S. Y. (2019). COX-2 inhibition rescues depression-like behaviors via suppressing glial activation, oxidative stress and neuronal apoptosis in rats. Neuropharmacology, 160, 107779. https://doi.org/10.1016/j.neuropharm.2019.107779
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Tangpong, J., Miriyala, S., Noel, T., Sinthupibulyakit, C., Jungsuwadee, P., & St. Clair, D. K. (2011). Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia Mangostana. Neuroscience, 175, 292–299. https://doi.org/10.1016/j.neuroscience.2010.11.007
There are 32 citations in total.

Details

Primary Language English
Subjects Veterinary Pathology
Journal Section Research Articles
Authors

Tuğçe Anteplioğlu

Miyase Çınar

Gözde Yaldız

Sevgi Betül Kayabaşı

Özkan Duru

Ruhi Kabakçı

Publication Date August 31, 2024
Submission Date April 17, 2024
Acceptance Date August 21, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Anteplioğlu, T., Çınar, M., Yaldız, G., Kayabaşı, S. B., et al. (2024). Neuroprotective role of n-acetylcysteine (NAC): countering doxorubicin neurotoxicity via TH, Nurr1, and iNOS expression. Mediterranean Veterinary Journal, 9(2), 299-305. https://doi.org/10.24880/meditvetj.1541540