Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 1, 432 - 438, 30.04.2025

Abstract

References

  • Aşkun, T., Kürkçüoğlu, M., & Güner, P. (2021). Anti-mycobacterial activity and chemical composition of essential oils and phenolicextracts of the balsam of Liquidambar orientalis Mill. (Altingiaceae). Turkish Journal of Botany, 45(8), 800-808. https://doi.org/10.3906/bot-2109-37
  • Atmaca, H., Camli Pulat, C., & Cittan, M. (2022). Liquidambar orientalis Mill. gum extract induces autophagy via PI3K/Akt/mTOR signaling pathway in prostate cancer cells. International Journal of Environmental Health Research, 32, 1011-1019. https://doi.org/10.1080/09603123.2020.1818187
  • Benchaar, C., Calsamiglia, S., Chaves, A. V., Fraser, G. R., Colombatto, D., McAllister, T. A., & Beauchemin, K. A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1-4), 209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
  • Bharanidharan, R., Arokiyaraj, S., Baik, M., Ibidhi, R., Lee, S. J., Lee, Y., Nam, I. S., & Kim, K. H. (2021). In vitro screening of east asian plant extracts for potential use in reducing ruminal methane production. Animals, 11(4), 1020. https://doi.org/10.3390/ani11041020
  • Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins–a current perspective. Biodegradation, 9(5), 343-357. https://doi.org/10.1023/A:1008397506963
  • Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F. J., & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176(1-4), 78-93. https:// doi.org/ 10.1 016/j.anifeedsci.2012.07.010
  • Broudiscou, L. P., Papon, Y., & Broudiscou, A. F. (2000). Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Animal Feed Science and Technology, 87(3-4), 263-277. https://doi.org/10.1016/S0377-8401(00)00193-0
  • Callaway, T. R., Edrington, T. S., Rychlik, J. L., Genovese, K. J., Poole, T. L., Jung, Y. S., Bischoff, K. M., Anderson, R. C., & Nisbet, D. J. (2003). Ionophores: their use as ruminant growth promotants and impact on food safety. Current Issues in Intestinal Microbiology, 4(2), 43-51.
  • Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., Ferret, A., & Fandino, I. (2007). The use of essential oils in ruminants as modifiers of rumen microbial fermentation. Penn State Dairy Cattle Nutrition Workshop, November 13-14, Grantville, PA.
  • Castillejos, L., Calsamiglia, S., Ferret, A., & Losa, R. (2007). Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology, 132, 186-201. https://doi.org/10.1016/j.anifeedsci.2006.03.023
  • Çetinkaya, S., Çınar Ayan, İ., Süntar, İ., & Dursun, H. G. (2022). The phytochemical profile and biological activity of Liquidambar orientalis Mill. var. orientalis via NF-κB and apoptotic pathways in human colorectal cancer. Nutrition and Cancer, 74(4), 1457-1473. https://doi.org/10.1080/01635581.2021.1952455
  • CLSI (Clinical and Laboratory Standards Institute) (2016). M100-S26. Performance standards for antimicrobial susceptibility testing: 26th Informational Supplement. Wayne, PA.
  • Das, A., Datta, S., Mukherjee, S., Bose, S., Ghosh, S., & Dhar, P. (2015). Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT-Food Science and Technology, 61(1), 244-250. https://doi.org/10.1016/j.lwt.2014.11.044
  • Demir, D., Özdemir, S., Ceylan, S., Yalcin, M. S., Sakım, B., & Bölgen, N. (2022). Electrospun composite nanofibers based on poly (ε-caprolactone) and styrax liquidus (Liquidambar orientalis Miller) as a wound dressing: preparation, characterization, biological and cytocompatibility results. Journal of Polymers and the Environment, 30(6), 2462-2473. https://doi.org/10.1007/s10924-022-02376-7
  • Demirtas, A., Musa, S. A., Salgirli-Demirbas, Y., Ozturk, H., Pekcan, M., Toprak, N. N., Safak, E., Unler, M., Saral, B., & Emre, M. B. (2021). The effects of Pinus brutia bark extract on pure and mixed continuous cultures of rumen bacteria and archaea, and fermentation characteristics in vitro. Veterinarski Arhiv, 91(5), 523-535. https://doi.org/10.24099/vet.arhiv.1036
  • Demirtaş, A., Öztürk, H., & Pişkin, İ. (2018). Overview of plant extracts and plant secondary metabolites as alternatives to antibiotics for modification of ruminal fermentation. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(2), 213-217.
  • Demirtas, A., Pacífico, C., Gruber, T., Chizzola, R., Zebeli, Q., & Khiaosa-Ard, R. (2023). Sigla storax (Liquidambar orientalis) mitigates in vitro methane production without disturbances in rumen microbiota and nutrient fermentation in comparison to monensin. Journal of Applied Microbiology, 134(8), lxad154. https://doi.org/10.1093/jambio/lxad154
  • Genzebu, D., & Tesfay, G. (2015). The role of bacteria in nitrogen metabolism in the rumen with emphasis of cattle. Research Journal of Agriculture and Environmental Management, 4(7), 282-290.
  • Griffin, S. G., Wyllie, S. G., Markham, J. L., & Leach, D. N. (1999). The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour and Fragrance Journal, 14(5), 322-332. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4
  • Kang, M. S., Oh, J. S., Kang, I. C., Hong, S. J., & Choi, C. H. (2008). Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology, 46, 744-750. https://doi.org/10.1007/s12275-008-0235-7
  • Keyvan, E., & Savaş, M. M. (2021). Evaluation of antibacterial activities of Stryax liquidus on Staphylococcus aureus on stainless steel surface. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 9(1), 7-11. https://doi.org/10.24998/maeusabed.878910
  • Kholif, A. E., & Olafadehan, O. A. (2021). Essential oils and phytogenic feed additives in ruminant diet: Chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochemistry Reviews, 20(6), 1087-1108. https://doi.org/10.1007/s11101-021-09739-3
  • Kılınç, Y., Baygar, T., Saraç, N., Uğur, A., & Karaca, İ. (2020). Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax. Turkish Journal of Clinics and Laboratory, 11(5), 359-365. https://doi.org/10.18663/tjcl.663112
  • Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. https://doi.or g/ 10.3168/ jds.2013-7234
  • Ko, H. H., Lareu, R. R., Dix, B. R., & Hughes, J. D. (2018). In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. European Journal of Clinical Microbiology & Infectious Diseases, 37, 1125-1135. https://doi.org/10.1007/s10096-018-3227-5
  • Martin, C., Niderkorn, V., Maxin, G., Guyader, J., Eugène, M., & Morgavi, D. P. (2021). The use of plant bioactive compounds to reduce greenhouse gas emissions from farmed ruminants. In: R. Baines (Ed.). Reducing Greenhouse Gas Emissions from Livestock Production. (pp. 231-60). Burleigh Dodds Science Publishing.
  • OJEU (2003). OJEU Regulation (EC) No 1831/2003 of the European Parliament and the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Official Journal of European Union. Page L268/36 in OJEU of 18/10/2003.
  • Orpin, C. G. (1976). Studies on the rumen flagellate Sphaeromonas communis. Journal of General Microbiology, 94, 270-280. https://doi.org/10.1099/00221287-94-2-270
  • Patra, A. K., Stiverson, J., & Yu, Z. (2012). Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro. Journal of Applied Microbiology, 113(6), 1329-1340. https://doi.org/10.1111/j.1365-2672.2012.05440.x
  • Patterson, J. E., McElmeel, L., & Wiederhold, N. P. (2019). In vitro activity of essential oils against Gram-positive and Gram-negative clinical isolates, including carbapenem-resistant Enterobacteriaceae. In: Open Forum Infectious Diseases (Vol. 6, No. 12, p. ofz502). Oxford University Press. https://doi.org/10.1093/ofid/ofz502
  • Russell, J. B., & Strobel, H. (1989). Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, 55(1), 1-6.
  • Sağdıç, O., Özkan, G., Özcan, M., & Özçelik, S. (2005). A Study on inhibitory effects of sığla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytotherapy Research, 19(6), 549-551. https://doi.org/10.1002/ptr.1654
  • Seow, Y. X., Yeo, C. R., Chung, H. L., & Yuk, H. G. (2014). Plant essential oils as active antimicrobial agents. Critical Reviews in Food Science and Nutrition, 54(5), 625-644. https://doi.org/10.1080/10408398.2011.599504
  • Sova, M. (2012). Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Reviews in Medicinal Chemistry, 12(8), 749-767. https://doi.org/10.2174/138955712801264792
  • Stefańska, B., Sroka, J., Katzer, F., Goliński, P., & Nowak, W. (2021). The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Animal Feed Science and Technology, 272, 114738. https://doi.org/10.1016/j.anifeedsci.2020.114738
  • Steinfeld, H., Wassenaar, T., & Jutzi, S. (2006). Livestock production systems in developing countries: status, drivers, trends. Revue Scientifique et Technique, 25(2), 505-516. https://doi. org/10.20506/rst.25.2.1677
  • Tawata, S., Taira, S., Kobamoto, N., Zhu, J., Ishihara, M., & Toyama, S. (1996). Synthesis and antifungal activity of cinnamic acid esters. Bioscience, Biotechnology, and Biochemistry, 60(5), 909-910. https://doi.org/10.1271/bbb.60.909
  • Thompson, A. J., Smith, Z. K., Sarturi, J. O., & Johnson, B. J. (2021). Antimicrobial supplementation alters digestibility and ruminal fermentation in a continuous culture model. Journal of Applied Animal Research, 49(1), 23-29. https://doi.org/10.1080/09712119.2021.1876704
  • Wedegaertner, T. C., & Johnson, D. E. (1983). Monensin effects on digestibility, methanogenesis and heat increment of a cracked corn-silage diet fed to steers. Journal of Animal Science, 57(1), 168-177. https://doi.org/10.2527/jas1983.571168x
  • Zhang, M., Ma, Y., Chai, L., Mao, H., Zhang, J., & Fan, X. (2019). Storax protected oxygen-glucose deprivation/reoxygenation induced primary astrocyte injury by inhibiting NF-κB activation in vitro. Frontiers in Pharmacology, 9, 1527. https://doi.org/10.3389/fphar.2018.01527
  • Zhou, M., Li, D., Shen, Q., Gao, L., Zhuang, P., Zhang, Y., & Guo, H. (2022). Storax inhibits caveolae-mediated transcytosis at blood-brain barrier after ischemic stroke in rats. Frontiers in Pharmacology, 13, 876235. https://doi.org/10.3389/fphar.2022.876235

Sensitivity of pure cultures of some Gram-positive and Gram-negative rumen bacteria to sigla storax (Liquidambar orientalis)

Year 2025, Volume: 10 Issue: 1, 432 - 438, 30.04.2025

Abstract

Extracted from the wounded bark of the Liquidambar orientalis tree, sigla storax is a semi-viscous, balsamic resin. This study aimed to evaluate the effects of sigla storax on the growth of pure cultures of select Gram-positive and Gram-negative rumen bacteria, thereby elucidating its potential mode of action on rumen metabolism as an alternative antibiotic feed additive. Under strictly anaerobic conditions, the antimicrobial activity of sigla storax was assessed using the broth microdilution method. With the exception of Streptococcus bovis, storax demonstrated potential antimicrobial activity on all bacteria at doses starting from 1-2 mg/ml (P<0.05). The most susceptible bacterium was Ruminococcus flavefaciens, which was inhibited at 4 mg/ml sigla, while the most resistant was S. bovis, which showed no inhibition. For other Gram-positive bacteria, the minimum inhibitory concentration (MIC) varied: 16 mg/ml for Butyrivibrio fibrisolvens, and 32 mg/ml for Ruminococcus albus, Eubacterium ruminantium, and Methanobacterium formicicum. Interestingly, at lower doses, sigla storax exhibited a growth-stimulating effect on E. ruminantium (0.06-0.125 mg/ml) and S. bovis (0.125-2 mg/ml) (P<0.05). The Gram-negative Megasphaera elsdenii also showed a slight stimulatory response to sigla storax at concentrations of 0.06-0.5 mg/ml (P<0.05). However, at 32 mg/ml, sigla storax inhibited both Gram-negative bacteria tested: M. elsdenii and Fibrobacter succinogenes. While Gram-positive bacteria generally exhibited higher sensitivity to sigla storax compared to Gram-negative bacteria, the study concluded that its mechanism of action differs from typical antibiotic feed additives. This distinction is due to sigla storax’s antibacterial activity against Gram-negative bacteria and its stimulatory effects on certain Gram-positive bacteria.

References

  • Aşkun, T., Kürkçüoğlu, M., & Güner, P. (2021). Anti-mycobacterial activity and chemical composition of essential oils and phenolicextracts of the balsam of Liquidambar orientalis Mill. (Altingiaceae). Turkish Journal of Botany, 45(8), 800-808. https://doi.org/10.3906/bot-2109-37
  • Atmaca, H., Camli Pulat, C., & Cittan, M. (2022). Liquidambar orientalis Mill. gum extract induces autophagy via PI3K/Akt/mTOR signaling pathway in prostate cancer cells. International Journal of Environmental Health Research, 32, 1011-1019. https://doi.org/10.1080/09603123.2020.1818187
  • Benchaar, C., Calsamiglia, S., Chaves, A. V., Fraser, G. R., Colombatto, D., McAllister, T. A., & Beauchemin, K. A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1-4), 209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
  • Bharanidharan, R., Arokiyaraj, S., Baik, M., Ibidhi, R., Lee, S. J., Lee, Y., Nam, I. S., & Kim, K. H. (2021). In vitro screening of east asian plant extracts for potential use in reducing ruminal methane production. Animals, 11(4), 1020. https://doi.org/10.3390/ani11041020
  • Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins–a current perspective. Biodegradation, 9(5), 343-357. https://doi.org/10.1023/A:1008397506963
  • Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F. J., & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176(1-4), 78-93. https:// doi.org/ 10.1 016/j.anifeedsci.2012.07.010
  • Broudiscou, L. P., Papon, Y., & Broudiscou, A. F. (2000). Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Animal Feed Science and Technology, 87(3-4), 263-277. https://doi.org/10.1016/S0377-8401(00)00193-0
  • Callaway, T. R., Edrington, T. S., Rychlik, J. L., Genovese, K. J., Poole, T. L., Jung, Y. S., Bischoff, K. M., Anderson, R. C., & Nisbet, D. J. (2003). Ionophores: their use as ruminant growth promotants and impact on food safety. Current Issues in Intestinal Microbiology, 4(2), 43-51.
  • Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., Ferret, A., & Fandino, I. (2007). The use of essential oils in ruminants as modifiers of rumen microbial fermentation. Penn State Dairy Cattle Nutrition Workshop, November 13-14, Grantville, PA.
  • Castillejos, L., Calsamiglia, S., Ferret, A., & Losa, R. (2007). Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology, 132, 186-201. https://doi.org/10.1016/j.anifeedsci.2006.03.023
  • Çetinkaya, S., Çınar Ayan, İ., Süntar, İ., & Dursun, H. G. (2022). The phytochemical profile and biological activity of Liquidambar orientalis Mill. var. orientalis via NF-κB and apoptotic pathways in human colorectal cancer. Nutrition and Cancer, 74(4), 1457-1473. https://doi.org/10.1080/01635581.2021.1952455
  • CLSI (Clinical and Laboratory Standards Institute) (2016). M100-S26. Performance standards for antimicrobial susceptibility testing: 26th Informational Supplement. Wayne, PA.
  • Das, A., Datta, S., Mukherjee, S., Bose, S., Ghosh, S., & Dhar, P. (2015). Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT-Food Science and Technology, 61(1), 244-250. https://doi.org/10.1016/j.lwt.2014.11.044
  • Demir, D., Özdemir, S., Ceylan, S., Yalcin, M. S., Sakım, B., & Bölgen, N. (2022). Electrospun composite nanofibers based on poly (ε-caprolactone) and styrax liquidus (Liquidambar orientalis Miller) as a wound dressing: preparation, characterization, biological and cytocompatibility results. Journal of Polymers and the Environment, 30(6), 2462-2473. https://doi.org/10.1007/s10924-022-02376-7
  • Demirtas, A., Musa, S. A., Salgirli-Demirbas, Y., Ozturk, H., Pekcan, M., Toprak, N. N., Safak, E., Unler, M., Saral, B., & Emre, M. B. (2021). The effects of Pinus brutia bark extract on pure and mixed continuous cultures of rumen bacteria and archaea, and fermentation characteristics in vitro. Veterinarski Arhiv, 91(5), 523-535. https://doi.org/10.24099/vet.arhiv.1036
  • Demirtaş, A., Öztürk, H., & Pişkin, İ. (2018). Overview of plant extracts and plant secondary metabolites as alternatives to antibiotics for modification of ruminal fermentation. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(2), 213-217.
  • Demirtas, A., Pacífico, C., Gruber, T., Chizzola, R., Zebeli, Q., & Khiaosa-Ard, R. (2023). Sigla storax (Liquidambar orientalis) mitigates in vitro methane production without disturbances in rumen microbiota and nutrient fermentation in comparison to monensin. Journal of Applied Microbiology, 134(8), lxad154. https://doi.org/10.1093/jambio/lxad154
  • Genzebu, D., & Tesfay, G. (2015). The role of bacteria in nitrogen metabolism in the rumen with emphasis of cattle. Research Journal of Agriculture and Environmental Management, 4(7), 282-290.
  • Griffin, S. G., Wyllie, S. G., Markham, J. L., & Leach, D. N. (1999). The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour and Fragrance Journal, 14(5), 322-332. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4
  • Kang, M. S., Oh, J. S., Kang, I. C., Hong, S. J., & Choi, C. H. (2008). Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology, 46, 744-750. https://doi.org/10.1007/s12275-008-0235-7
  • Keyvan, E., & Savaş, M. M. (2021). Evaluation of antibacterial activities of Stryax liquidus on Staphylococcus aureus on stainless steel surface. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 9(1), 7-11. https://doi.org/10.24998/maeusabed.878910
  • Kholif, A. E., & Olafadehan, O. A. (2021). Essential oils and phytogenic feed additives in ruminant diet: Chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochemistry Reviews, 20(6), 1087-1108. https://doi.org/10.1007/s11101-021-09739-3
  • Kılınç, Y., Baygar, T., Saraç, N., Uğur, A., & Karaca, İ. (2020). Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax. Turkish Journal of Clinics and Laboratory, 11(5), 359-365. https://doi.org/10.18663/tjcl.663112
  • Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. https://doi.or g/ 10.3168/ jds.2013-7234
  • Ko, H. H., Lareu, R. R., Dix, B. R., & Hughes, J. D. (2018). In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. European Journal of Clinical Microbiology & Infectious Diseases, 37, 1125-1135. https://doi.org/10.1007/s10096-018-3227-5
  • Martin, C., Niderkorn, V., Maxin, G., Guyader, J., Eugène, M., & Morgavi, D. P. (2021). The use of plant bioactive compounds to reduce greenhouse gas emissions from farmed ruminants. In: R. Baines (Ed.). Reducing Greenhouse Gas Emissions from Livestock Production. (pp. 231-60). Burleigh Dodds Science Publishing.
  • OJEU (2003). OJEU Regulation (EC) No 1831/2003 of the European Parliament and the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Official Journal of European Union. Page L268/36 in OJEU of 18/10/2003.
  • Orpin, C. G. (1976). Studies on the rumen flagellate Sphaeromonas communis. Journal of General Microbiology, 94, 270-280. https://doi.org/10.1099/00221287-94-2-270
  • Patra, A. K., Stiverson, J., & Yu, Z. (2012). Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro. Journal of Applied Microbiology, 113(6), 1329-1340. https://doi.org/10.1111/j.1365-2672.2012.05440.x
  • Patterson, J. E., McElmeel, L., & Wiederhold, N. P. (2019). In vitro activity of essential oils against Gram-positive and Gram-negative clinical isolates, including carbapenem-resistant Enterobacteriaceae. In: Open Forum Infectious Diseases (Vol. 6, No. 12, p. ofz502). Oxford University Press. https://doi.org/10.1093/ofid/ofz502
  • Russell, J. B., & Strobel, H. (1989). Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, 55(1), 1-6.
  • Sağdıç, O., Özkan, G., Özcan, M., & Özçelik, S. (2005). A Study on inhibitory effects of sığla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytotherapy Research, 19(6), 549-551. https://doi.org/10.1002/ptr.1654
  • Seow, Y. X., Yeo, C. R., Chung, H. L., & Yuk, H. G. (2014). Plant essential oils as active antimicrobial agents. Critical Reviews in Food Science and Nutrition, 54(5), 625-644. https://doi.org/10.1080/10408398.2011.599504
  • Sova, M. (2012). Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Reviews in Medicinal Chemistry, 12(8), 749-767. https://doi.org/10.2174/138955712801264792
  • Stefańska, B., Sroka, J., Katzer, F., Goliński, P., & Nowak, W. (2021). The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Animal Feed Science and Technology, 272, 114738. https://doi.org/10.1016/j.anifeedsci.2020.114738
  • Steinfeld, H., Wassenaar, T., & Jutzi, S. (2006). Livestock production systems in developing countries: status, drivers, trends. Revue Scientifique et Technique, 25(2), 505-516. https://doi. org/10.20506/rst.25.2.1677
  • Tawata, S., Taira, S., Kobamoto, N., Zhu, J., Ishihara, M., & Toyama, S. (1996). Synthesis and antifungal activity of cinnamic acid esters. Bioscience, Biotechnology, and Biochemistry, 60(5), 909-910. https://doi.org/10.1271/bbb.60.909
  • Thompson, A. J., Smith, Z. K., Sarturi, J. O., & Johnson, B. J. (2021). Antimicrobial supplementation alters digestibility and ruminal fermentation in a continuous culture model. Journal of Applied Animal Research, 49(1), 23-29. https://doi.org/10.1080/09712119.2021.1876704
  • Wedegaertner, T. C., & Johnson, D. E. (1983). Monensin effects on digestibility, methanogenesis and heat increment of a cracked corn-silage diet fed to steers. Journal of Animal Science, 57(1), 168-177. https://doi.org/10.2527/jas1983.571168x
  • Zhang, M., Ma, Y., Chai, L., Mao, H., Zhang, J., & Fan, X. (2019). Storax protected oxygen-glucose deprivation/reoxygenation induced primary astrocyte injury by inhibiting NF-κB activation in vitro. Frontiers in Pharmacology, 9, 1527. https://doi.org/10.3389/fphar.2018.01527
  • Zhou, M., Li, D., Shen, Q., Gao, L., Zhuang, P., Zhang, Y., & Guo, H. (2022). Storax inhibits caveolae-mediated transcytosis at blood-brain barrier after ischemic stroke in rats. Frontiers in Pharmacology, 13, 876235. https://doi.org/10.3389/fphar.2022.876235
There are 41 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section Research Article
Authors

Ahu Demirtaş 0000-0003-2942-6243

Publication Date April 30, 2025
Submission Date September 25, 2024
Acceptance Date February 12, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Demirtaş, A. (2025). Sensitivity of pure cultures of some Gram-positive and Gram-negative rumen bacteria to sigla storax (Liquidambar orientalis). Mediterranean Veterinary Journal, 10(1), 432-438.