Aim: Sonodynamic antitumor therapy is a promising, novel method for the treatment of cancer. To determine the effects of malachite green (MG) in the presence of ultrasound (US), MG was tested in vitro on HL60 cells at different concentrations as a sonodynamic compound. We investigated cell viability, morphology, and the occurrence of ER stress after MG-mediated sonodynamic therapy (SDT) in HL60 cells.
Aim: Sonodynamic antitumor therapy is a promising, novel method for the treatment of cancer. To determine the effects of malachite green (MG) in the presence of ultrasound (US), MG was tested in vitro on HL60 cells at different concentrations as a sonodynamic compound. We investigated cell viability, morphology, and the occurrence of endoplasmic reticulum (ER) stress after MG-mediated sonodynamic therapy (SDT) in HL60 cells.
Material and Method: Four groups were formed, including a control group, a group subjected to ultrasound (US) only, a group treated with various concentrations of MG, and a group treated with US using the same concentrations. The cells were treated with 1MHz ultrasound at 2 W/cm2 for 3 minutes. The assessment of cell viability was conducted 24 hours post-treatment through the utilization of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell morphology and apoptotic index were determined using Giemsa staining, while GRP78 and PERK expressions were determined through immunocytochemistry staining.
Results: The cell cytotoxicity of HL60 cells significantly increased after MG-mediated sonodynamic therapy. After treatment, apoptotic cells with micronuclei were observed morphologically. Significant levels of GRP78 and PERK expression were observed in all groups, except for PERK expression in the US group, compared to the control group.
Conclusion: The induction of ER stress, accompanied by intense apoptosis and a marked decrease in cell viability, demonstrates the potential of MG-mediated sonodynamic therapy in cancer treatment. Investigating ER stress as a molecular target may contribute to improving the treatment method.
Since the methodological structure of the study is a "cell culture study", it does not require ethics committee approval in accordance with the World Medical Association Declaration of Helsinki "Ethical Principles for Medical Research on Humans"
The authors declared that this study has received no financial support.
Primary Language | English |
---|---|
Subjects | Medical Physics, Medical and Biological Physics (Other) |
Journal Section | Original Articles |
Authors | |
Publication Date | January 31, 2024 |
Submission Date | November 27, 2023 |
Acceptance Date | December 23, 2023 |
Published in Issue | Year 2024 Volume: 6 Issue: 1 |
Chief Editors
Assoc. Prof. Zülal Öner
İzmir Bakırçay University, Department of Anatomy, İzmir, Türkiye
Assoc. Prof. Deniz Şenol
Düzce University, Department of Anatomy, Düzce, Türkiye
Editors
Assoc. Prof. Serkan Öner
İzmir Bakırçay University, Department of Radiology, İzmir, Türkiye
E-mail: medrecsjournal@gmail.com
Publisher:
Medical Records Association (Tıbbi Kayıtlar Derneği)
Address: Orhangazi Neighborhood, 440th Street,
Green Life Complex, Block B, Floor 3, No. 69
Düzce, Türkiye
Web: www.tibbikayitlar.org.tr
Publication Support:
Effect Publishing & Agency
Phone: + 90 (540) 035 44 35
E-mail: info@effectpublishing.com
Address: Akdeniz Neighborhood, Şehit Fethi Bey Street,
No: 66/B, Ground floor, 35210 Konak/İzmir, Türkiye
web: www.effectpublishing.com