Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 3, 671 - 8, 09.09.2025
https://doi.org/10.37990/medr.1698948

Abstract

References

  • Al-Quran FA, Al-Ghalayini RF, Al-Zu’bi BN. Single-tooth replacement: factors affecting different prosthetic treatment modalities. BMC Oral Health. 2011;11:34.
  • Zhong S, Chen M, Gao R, Shu C. Dental implant restoration for dentition defects improves clinical efficacy, masticatory function and patient comfort. Am J Transl Res. 2022;14:6399-405.
  • Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1-15.
  • Smeets R, Stadlinger B, Schwarz F, et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016;1:6285620.
  • Chen Z, Lin CY, Li J, et al. Influence of abutment height on peri-implant marginal bone loss: a systematic review and meta-analysis. J Prosthet Dent. 2019;122:14-21.e2.
  • Solderer A, Giuliani C, Wiedemeier DB, et al. Early marginal peri-implant bone loss around tissue-level implants: a retrospective radiographic evaluation. Int J Implant Dent. 2025;11:20.
  • Suárez-López del Amo F, Lin G, Monje A, et al. Influence of soft tissue thickness on peri-implant marginal bone loss: a systematic review and meta-analysis. J Periodontol. 2016;87:690-9.
  • Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1:11-25.
  • Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10:387-416.
  • Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent. 1989;62:567-72.
  • Lin CP, Shyu YT, Wu YL, et al. Effects of marginal bone loss progression on stress distribution in different implant–abutment connections and abutment materials: a 3D finite element analysis study. Materials (Basel). 2022;15:5866.
  • Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. 2000;5:22-31.
  • Steigenga JT, Al-Shammari KF, Nociti FH, et al. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12:306-17.
  • Nisand D, Picard N, Rocchietta I. Short implants compared to implants in vertically augmented bone: a systematic review. Clin Oral Implants Res. 2015;26:170-9.
  • Bitinas D, Bardijevskyte G. Short implants without bone augmentation vs. long implants with bone augmentation: systematic review and meta-analysis. Aust Dent J. 2021;66:S71-81.
  • Ercal P, Taysi AE, Ayvalioglu DC, et al. Impact of peri-implant bone resorption, prosthetic materials, and crown to implant ratio on the stress distribution of short implants: a finite element analysis. Med Biol Eng Comput. 2021;59:813-24.
  • Araki H, Nakano T, Ono S, Yatani H. Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials. Int J Implant Dent. 2020;6:5.
  • Li R, Wu Z, Chen S, et al. Biomechanical behavior analysis of four types of short implants with different placement depths using the finite element method. J Prosthet Dent. 2023;129:447.e1-10.
  • Tribst JPM, Dal Piva AMO, Lo Giudice R, et al. The influence of custom-milled framework design for an implant-supported full-arch fixed dental prosthesis: 3D-FEA study. Int J Environ Res Public Health. 2020;17:4040.
  • Choi SM, Choi H, Lee DH, Hong MH. Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis. J Adv Prosthodont. 2021;13:396-407.
  • Inglam S, Suebnukarn S, Tharanon W, et al. Influence of graft quality and marginal bone loss on implants placed in maxillary grafted sinus: a finite element study. Med Biol Eng Comput. 2010;48:681-9.
  • Romeed SA, Malik R, Dunne SM. Marginal bone loss influence on the biomechanics of single implant crowns. J Craniofac Surg. 2013;24:1459-65.
  • Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant: a three-dimensional finite element analysis. J Oral Rehabil. 2005;32:279-86.
  • Akca K, Cehreli MC. Biomechanical consequences of progressive marginal bone loss around oral implants: a finite element stress analysis. Med Biol Eng Comput. 2006;44:527-35.

Effect of Marginal Bone Resorption on Stress Distribution in Implants of Different Lengths: A Three-Dimensional Finite Element Analysis

Year 2025, Volume: 7 Issue: 3, 671 - 8, 09.09.2025
https://doi.org/10.37990/medr.1698948

Abstract

Aim: Marginal bone resorption occurring around dental implants may cause biomechanical changes and lead to implant loss over time. It is not fully understood how this bone loss affects implants of different lengths and the stress on the surrounding bone.
Material and Method: Implant models with lengths of 6.6 mm and 13 mm were created at five different marginal bone resorption levels (0, 1, 2, 3 and 4 mm). All implants were 4.6 mm in diameter and were placed in idealized bone blocks with a crown representing the maxillary first molar. The models were analyzed under vertical and 30° oblique load of 100 newton (N). Von Mises stress in the implant body and maximum and minimum principal stress in cortical and cancellous bone were evaluated.
Results: The highest stress values were observed in 6.6 mm implants under oblique loading. While the von Mises stress was 97.4 megapascals (MPa) at 0 mm bone loss, it increased to 133.0 MPa at 4 mm bone loss. These values increased from 82 MPa to 99.1 MPa in 13 mm implants. The maximum principal stress in cortical bone increased from 13.7 MPa to 62.5 MPa in short implants and from 11.8 MPa to 36.0 MPa in long implants. Stress values were found to be higher in short implants at all resorption levels.
Conclusion: Implant length and level of bone loss affect stress distribution. Short implants and advanced resorption create more stress, while stress can be temporarily reduced by changing the load transmission geometry in the early stage.

Ethical Statement

This study was conducted entirely in a digital environment and does not contain any live data, patient images or personal health information. For these reasons, ethics committee approval is not required.

Thanks

The authors would like to thank Gzm Teknoloji Tasarım San Tic Ve Ltd Şti. for their technical support in performing the finite element simulations used in this study.

References

  • Al-Quran FA, Al-Ghalayini RF, Al-Zu’bi BN. Single-tooth replacement: factors affecting different prosthetic treatment modalities. BMC Oral Health. 2011;11:34.
  • Zhong S, Chen M, Gao R, Shu C. Dental implant restoration for dentition defects improves clinical efficacy, masticatory function and patient comfort. Am J Transl Res. 2022;14:6399-405.
  • Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1-15.
  • Smeets R, Stadlinger B, Schwarz F, et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016;1:6285620.
  • Chen Z, Lin CY, Li J, et al. Influence of abutment height on peri-implant marginal bone loss: a systematic review and meta-analysis. J Prosthet Dent. 2019;122:14-21.e2.
  • Solderer A, Giuliani C, Wiedemeier DB, et al. Early marginal peri-implant bone loss around tissue-level implants: a retrospective radiographic evaluation. Int J Implant Dent. 2025;11:20.
  • Suárez-López del Amo F, Lin G, Monje A, et al. Influence of soft tissue thickness on peri-implant marginal bone loss: a systematic review and meta-analysis. J Periodontol. 2016;87:690-9.
  • Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1:11-25.
  • Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10:387-416.
  • Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent. 1989;62:567-72.
  • Lin CP, Shyu YT, Wu YL, et al. Effects of marginal bone loss progression on stress distribution in different implant–abutment connections and abutment materials: a 3D finite element analysis study. Materials (Basel). 2022;15:5866.
  • Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. 2000;5:22-31.
  • Steigenga JT, Al-Shammari KF, Nociti FH, et al. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12:306-17.
  • Nisand D, Picard N, Rocchietta I. Short implants compared to implants in vertically augmented bone: a systematic review. Clin Oral Implants Res. 2015;26:170-9.
  • Bitinas D, Bardijevskyte G. Short implants without bone augmentation vs. long implants with bone augmentation: systematic review and meta-analysis. Aust Dent J. 2021;66:S71-81.
  • Ercal P, Taysi AE, Ayvalioglu DC, et al. Impact of peri-implant bone resorption, prosthetic materials, and crown to implant ratio on the stress distribution of short implants: a finite element analysis. Med Biol Eng Comput. 2021;59:813-24.
  • Araki H, Nakano T, Ono S, Yatani H. Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials. Int J Implant Dent. 2020;6:5.
  • Li R, Wu Z, Chen S, et al. Biomechanical behavior analysis of four types of short implants with different placement depths using the finite element method. J Prosthet Dent. 2023;129:447.e1-10.
  • Tribst JPM, Dal Piva AMO, Lo Giudice R, et al. The influence of custom-milled framework design for an implant-supported full-arch fixed dental prosthesis: 3D-FEA study. Int J Environ Res Public Health. 2020;17:4040.
  • Choi SM, Choi H, Lee DH, Hong MH. Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis. J Adv Prosthodont. 2021;13:396-407.
  • Inglam S, Suebnukarn S, Tharanon W, et al. Influence of graft quality and marginal bone loss on implants placed in maxillary grafted sinus: a finite element study. Med Biol Eng Comput. 2010;48:681-9.
  • Romeed SA, Malik R, Dunne SM. Marginal bone loss influence on the biomechanics of single implant crowns. J Craniofac Surg. 2013;24:1459-65.
  • Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant: a three-dimensional finite element analysis. J Oral Rehabil. 2005;32:279-86.
  • Akca K, Cehreli MC. Biomechanical consequences of progressive marginal bone loss around oral implants: a finite element stress analysis. Med Biol Eng Comput. 2006;44:527-35.
There are 24 citations in total.

Details

Primary Language English
Subjects Oral and Maxillofacial Surgery
Journal Section Original Articles
Authors

Onur Odabaşı 0000-0001-7771-048X

Mehmet Emrah Polat 0000-0002-3249-1997

Publication Date September 9, 2025
Submission Date May 14, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 7 Issue: 3

Cite

AMA Odabaşı O, Polat ME. Effect of Marginal Bone Resorption on Stress Distribution in Implants of Different Lengths: A Three-Dimensional Finite Element Analysis. Med Records. September 2025;7(3):671-8. doi:10.37990/medr.1698948

17741

Chief Editors

MD, Professor. Zülal Öner
İzmir Bakırçay University, Department of Anatomy, İzmir, Türkiye

Assoc. Prof. Deniz Şenol
Düzce University, Department of Anatomy, Düzce, Türkiye

Editors
Assoc. Prof. Serkan Öner
İzmir Bakırçay University, Department of Radiology, İzmir, Türkiye
 
E-mail: medrecsjournal@gmail.com

Publisher:
Medical Records Association (Tıbbi Kayıtlar Derneği)
Address: Orhangazi Neighborhood, 440th Street,
Green Life Complex, Block B, Floor 3, No. 69
Düzce, Türkiye
Web: www.tibbikayitlar.org.tr