Research Article
BibTex RIS Cite

INVESTIGATION OF Pd@g-C3N4/TiO2 NANOPARTICLES AS PHOTOCATALYST IN THE DEGRADATION OF METHYLENE BLUE UNDER VISIBLE LIGHT IRRADIATION

Year 2021, , 100 - 111, 30.12.2021
https://doi.org/10.51477/mejs.1003369

Abstract

In the present study, the efficiency of Pd@g-C3N4/TiO2 NPs as photocatalyst on degradation of organic pollutant methylene blue (MB) dye under visible light has been investigated. A traditional one-step impregnation-reduction method was used for the preparation of photocatalysts. Pd@g-C3N4/TiO2 NPs were characterized by several techniques such as FT-IR, DR/UV-Vis, SEM-EDX, TEM, P-XRD, and XPS analyses. The photocatalytic performance of Pd@g-C3N4/TiO2 NPs was evaluated for the degradation of MB dye under visible light irradiation. Among different loadings of Pd(0.3, 0.5, and 0.7 %), the 0.5% loading Pd@ g-C3N4/TiO2 NPs showed the highest catalytic activity. The results revealed an enhancement in the visible light photocatalytic activity of g-C3N4/TiO2 when it was coupled with Pd in the composite. Compared with pure g-C3N4/TiO2, the Pd@ g-C3N4/TiO2 hybrid photocatalyst exhibited enhanced visible light photoactivity, which was approximately three times higher than that of pure g-C3N4/TiO2.

Supporting Institution

Dicle University Research Fund

Project Number

DUBAP Project No: FEN.19.012

References

  • [ 1] Akpan, U. G., Hameed, B.H., “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review”, Journal of Hazardous Materials,170, 520-529, 2009. Doi: https://doi.org/10.1016/j.jhazmat.2009.05.039
  • [ 2] Luo, X., Zhang, L., Journal of Hazardous Materials”, High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon” 171, 340-347, 2009. Doi: https://doi.org/10.1016/j.jhazmat.2009.06.009
  • [ 3 ] Zhu, M.X., Lee, L., Wang, H.H., Wang, Z., Journal of Hazardous Materials, 149, 735-741, 2007. Doi: https://doi.org/10.1016/j.jhazmat.2007.04.037
  • [ 4] Weber, E.J., Adams, R.L., Environ. Sci. Technol., 29, 1163-1170, 1995. Doi: https://doi.org/10.1021/es00005a005
  • [ 5 ] Bruggen, B.V.D., Vandecastelee, C., Gestel T.V., Doyen W., Leysen R., Environmental Progress, 22, 46-56, 2003. Doi: https://doi.org/10.1002/ep.670220116
  • [ 6 ] Raghu, S., Basha, C.A., “Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater” Journal of Hazardous Materials, 149, 324-330, 2007. Doi: https://doi.org/10.1016/j.jhazmat.2007.03.087
  • [7 ] Brillas, E., Martinez, C.A., “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review”, Applied Catalysis B: Environmental, 166-167, 603-643, 2007. Doi: https://doi.org/10.1016/j.apcatb.2014.11.016
  • [ 8 ] Correira, V.M., Stephanson, T., Judd, S.J., “Characterisation of Textile Wastewaters-A Review”, Environmental Technology,15,917-929,1994. Doi:http://dx.doi.org/10.1080/ 09593339409385500
  • [ 9] Qiu, J.H., Feng, Y., Zhang, X.F., Zhang, X.G., Jia, M.M., Yao, J.F., “Facile stir-dried preparation of g-C3N4/TiO2 homogeneous composites with enhanced photocatalytic activity”, RSC Advances, 7, 10668-10674, 2017. Doi: https://doi.org/10.1039/C7RA00050B
  • [ 10] Wang, G.H., Xu, L., Zhang, J., Yin, T.T., Han, D., “Enhanced photocatalytic activity of powders (P25) via calcination treatment”, International Journal of Photoenergy, 265760, 2012. Doi: https://doi.org/10.1155/2012/265760
  • [11 ] Li, J.L., Jia, S.Q., Sui, G.Z., Du, L.J., Li, B.X., “Preparation of hollow Nd/TiO2 sub-microspheres with enhanced visible-light photocatalytic activity”, RSC Advances, 7, 34857-34865, 2017. Doi: https://doi.org/10.1039/C7RA05228F
  • [ 12] Konstantinou, I.K., Albanis, T.A., “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review”, Applied Catalysis B: Environmental, 49,1-14, 2004. Doi: https://doi.org/10.1016/j.apcatb.2003.11.010
  • [13 ] Teh, C.Y., Wu, T.Y., Juan, J.C., “An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant”, Chemical Engineering Journal, 317, 586-612, 2017. Doi: https://doi.org/10.1016/j.cej.2017.01.001
  • [ 14] Teh, C.Y., Wu, T.Y., Juan, J.C., “Facile sonochemical synthesis of N,Cl-codoped TiO2: Synthesis effects, mechanism and photocatalytic performance”, Catalysis Today, 256, 365-374, 2015. Doi: https://doi.org/10.1016/j.cattod.2015.02.014
  • [ 15] Ullah, R., Dutta, J.,“Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles”, Journal of Hazardous Materials, 156,194-200,2008. Doi: https://doi.org/10.1016/ j.jhazmat. 2007.12.033
  • [16 ] Zhang, G., Gao, Y., Zhang, Y., Guo, Y., “Fe2O3-Pillared Rectorite as an Efficient and Stable Fenton-Like Heterogeneous Catalyst for Photodegradation of Organic Contaminants”, Environmental Science Technology, 44, 6384-6389, 2010. Doi: https://doi.org/10.1021/ es1011093
  • [17 ] Li, X., Zhu, J., Li, H., “Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS”, Applied Catalysis B: Environmental, B 123, 174, 2012. Doi: https://doi.org/10.1016/j.apcatb.2012.04.009
  • [ 18] Gong, D.G., Highfield, J.G., Ng, S.Z.E., Tang, Y.X., Ho, W.C.J., Tay, Q.L., Chen, Z., “Poly Tristriazines as visible light sensitizers in Titania-based composite photocatalysts: Promotion of Melon development from urea over acid Titanates”, ACS Sustainable Chemistry & Engineering, 2, 149–157, 2014. Doi: https://doi.org/10.1021/sc400162p
  • [19 ] Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., Antonietti, M., “A metal-free polymeric photocatalyst for hydrogen production from water under visible light”, Nature Materials. 8, 76–80, 2009. Doi: https://doi.org/10.1038/nmat2317
  • [ 20] Li, Y.N., Wang, M.Q., Bao, S.J., Lu, S.Y., Xu, M.W., Long, D.B., Pu, S.H.. “Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity”, Ceramics International, 42, 18521-18528, 2016. Doi: https://doi.org/10.1016/ j.ceramint.2016.08.190
  • [21 ] Chen, Y., Wang, X.C., “Template-free synthesis of hollow g-C3N4 polymer with vesicle structure for enhanced photocatalytic water splitting”, The Journal of Physical Chemistry C, 122, 3786-3793, 2018. Doi: https://doi.org/10.1021/acs.jpcc.7b12496
  • [ 22] Li, J.L., Liu, T., Sui, G.Z., Zhen, D.S., “Photocatalytic performance of a Nd-SiO2-TiO2 nanocomposite for degradation of Rhodamine B dye wastewater”, Journal Nanoscience And Nanotechnology,15, 1408-1415, 2015. Doi: https://doi.org/10.1166/jnn.2015.9611
  • [ 23] Wang, J., Wang, G.H., Wei, X.H., Liu, G., Li, J., “ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB”, Applied Surface Science, 456, 666-675, 2018. Doi: https://doi.org/10.1016/ J.APSUSC.2018.06.182
  • [ 24] Zhou, W., Li, W., Wang, J.Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K.F., Wang, L., Fu, H.G., Zhao, D.Y., “Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst”, Journal of the American Chemical Society, 136, 9280-9283, 2014. Doi: https://doi.org/10.1021/ ja504802q
  • [ 25] Thompson, T.L., Yates, J.T., “Surface science studies of the photoactivation of TiO2-New photochemical processes”, Chemical Reviews. 38, 4428-4453, 2006. Doi: https://doi.org/10.1021/ cr050172k
  • [ 26] Tong, Z.W., Yang, D., Xiao, T.X., Tian, Y., Jiang, Z.Y., “Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation”, Chemical Engineering. Journal, 260, 117-125, 2015. Doi: https://doi.org/10.1016/ j.cej.2014.08.072
  • [ 27] Lu, N., Wang, C.Y., Sun, B., Gao, Z.M., Su, Y., “Fabrication of TiO2-doped single layer graphitic-C3N4 and its visible-light photocatalytic activity”, Separation And Purification Technology. 286 (2017) 226-232. Doi: https://doi.org/10.1016/j.seppur.2017.06.008
  • [ 28] Tan, Y.G., Shu, Z., Zhou, J., Li, T.T., Wang, W.B., Zhao, Z.L., “One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution”, Application Catalyst B-environmental. 230, 260–268, 2018. Doi: https://doi.org/10.1016/J.APCATB.2018.02.056
  • [ 29] Li, J.L., Du, L.J., Jia, S.Q., Sui, G.Z., Zhang, Y. L., Zhuang, Y., Li, B.X., Xing, Z.Y.. “Synthesis and photocatalytic properties of visible light-responsive, three-dimensional, flower-like La–TiO2/g-C3N4 heterojunction composites”, RSC Advances, 8, 29654-29653, 2018. Doi: https://doi.org/10.1039/ c8ra06466k
  • [ 30] Das, T. K., Banerjee, S., Vishwanadh, B., Joshi, R., Sudarsan, V., “On the nature of interaction between Pd nanoparticles and C3N4 support”, Solid State Sciences, 83, 70–75, 2018. Doi: https://doi.org/10.1016/ j.solidstatesciences.2018.06.011
  • [ 31] Ming Lei, Zhiying Wang, Lihua Zhu, Wenshan Nie, Heqing Tang, “Complete debromination of 2,2′,4,4′-tetrabromodiphenyl eth1er by visible-light photocatalysis on g-C3N4 supported Pd”, Applied Catalysis B: Environmental, 261, 118-236, 2020. Doi: https://doi.org/10.1016/ j.apcatb.2019.118236
  • [ 32] Hosseini S. M., Ghiaci M., Farrokhpour H., “The adsorption of small size Pd clusters on a g-C3N4 quantum dot: DFT and TD-DFT study”, Materials Research Express, 6, 105079, 2019. Doi: https://doi.org/10.1088/ 2053-1591/ab3cbd
  • [ 33] Guo Y., Xiao L., Zhang M., Li Q., Yang J., “An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance, Applied Surface Science, 440, 432–439, 2018. Doi: https://doi.org/10.1016/j.apsusc.2018.01.144
  • [ 34] R.A. Senthil, J. Theerthagiri, A. Selvi, J. Madhavan, “Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation”, Optical Materials, 64, 533-539, 2017. Doi: http://dx.doi.org/10.1016/j.optmat. 2017.01.025
  • [ 35] R.A. Senthil, J. Theerthagiri, A. Selvi, J. Madhavan, “Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation”, Optical Materials, 64, 533-539, 2017. Doi: http://dx.doi.org/10.1016/j.optmat. 2017.01.025
  • [ 36] Çelebi, M., Yurderi, M., Bulut A., Kaya, M., Zahmakıran, M., “Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction” Applied Catalysis B: Environmental, 180, 53-64, 2016. Doi: https://doi.org/10.1016/j.apcatb.2015.06.020
  • [ 37] Yan, H., Yan, H., “TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation”, Journal of Alloys and Compounds, 509, 26- 29, 2011. Doi: https://doi.org/ 10.1016/j.jallcom.2010.09.201
  • [ 38] Sabri, N.A., Nawi, M.A., Nawawi, W.I., “Porous immobilized C coated N doped TiO2 containing in-situ generated polyenes for enhanced visible light photocatalytic activity”, Optical Materials, 48, 258-266, 2015. Doi: 10.1016/j.optmat.2015.08.010
  • [ 39] Zhang, Q., Meng, G., Wu, J., Li, D., Liu, Z., “Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core–shell nanostructure”, Optical Materials, 46,52-58, 2015. Doi: https://doi.org/10.1016/j.optmat.2015.04.001
  • [ 40] R.A. Senthil, J. Theerthagiri, A. Selvi, J. Madhavan, “Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation”, Optical Materials, 64, 533-539, 2017. Doi: http://dx.doi.org/10.1016/j.optmat. 2017.01.025
  • [ 41] Yu Y., Zhao Y., Huang T., Liu H., “Shape-controlled synthesis of palladium nanocrystals by microwave irradiation”, Pure Applied Chemistry, 81, 2377–2385, 2009. Doi:10.1351/PAC-CON-08-11-22
  • [ 42] Ghorbani S., Parnian R., Soleimani E. “Pd nanoparticles supported on pyrazolone-functionalized hollow mesoporous silica as an excellent heterogeneous nanocatalyst for the selective oxidation of benzyl alcohol”, Journal of Organometallic Chemistry, 952, 1, 122025, 2021. Doi: https://doi.org/ 10.1016/j.jorganchem.2021.122025
Year 2021, , 100 - 111, 30.12.2021
https://doi.org/10.51477/mejs.1003369

Abstract

Project Number

DUBAP Project No: FEN.19.012

References

  • [ 1] Akpan, U. G., Hameed, B.H., “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review”, Journal of Hazardous Materials,170, 520-529, 2009. Doi: https://doi.org/10.1016/j.jhazmat.2009.05.039
  • [ 2] Luo, X., Zhang, L., Journal of Hazardous Materials”, High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon” 171, 340-347, 2009. Doi: https://doi.org/10.1016/j.jhazmat.2009.06.009
  • [ 3 ] Zhu, M.X., Lee, L., Wang, H.H., Wang, Z., Journal of Hazardous Materials, 149, 735-741, 2007. Doi: https://doi.org/10.1016/j.jhazmat.2007.04.037
  • [ 4] Weber, E.J., Adams, R.L., Environ. Sci. Technol., 29, 1163-1170, 1995. Doi: https://doi.org/10.1021/es00005a005
  • [ 5 ] Bruggen, B.V.D., Vandecastelee, C., Gestel T.V., Doyen W., Leysen R., Environmental Progress, 22, 46-56, 2003. Doi: https://doi.org/10.1002/ep.670220116
  • [ 6 ] Raghu, S., Basha, C.A., “Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater” Journal of Hazardous Materials, 149, 324-330, 2007. Doi: https://doi.org/10.1016/j.jhazmat.2007.03.087
  • [7 ] Brillas, E., Martinez, C.A., “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review”, Applied Catalysis B: Environmental, 166-167, 603-643, 2007. Doi: https://doi.org/10.1016/j.apcatb.2014.11.016
  • [ 8 ] Correira, V.M., Stephanson, T., Judd, S.J., “Characterisation of Textile Wastewaters-A Review”, Environmental Technology,15,917-929,1994. Doi:http://dx.doi.org/10.1080/ 09593339409385500
  • [ 9] Qiu, J.H., Feng, Y., Zhang, X.F., Zhang, X.G., Jia, M.M., Yao, J.F., “Facile stir-dried preparation of g-C3N4/TiO2 homogeneous composites with enhanced photocatalytic activity”, RSC Advances, 7, 10668-10674, 2017. Doi: https://doi.org/10.1039/C7RA00050B
  • [ 10] Wang, G.H., Xu, L., Zhang, J., Yin, T.T., Han, D., “Enhanced photocatalytic activity of powders (P25) via calcination treatment”, International Journal of Photoenergy, 265760, 2012. Doi: https://doi.org/10.1155/2012/265760
  • [11 ] Li, J.L., Jia, S.Q., Sui, G.Z., Du, L.J., Li, B.X., “Preparation of hollow Nd/TiO2 sub-microspheres with enhanced visible-light photocatalytic activity”, RSC Advances, 7, 34857-34865, 2017. Doi: https://doi.org/10.1039/C7RA05228F
  • [ 12] Konstantinou, I.K., Albanis, T.A., “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review”, Applied Catalysis B: Environmental, 49,1-14, 2004. Doi: https://doi.org/10.1016/j.apcatb.2003.11.010
  • [13 ] Teh, C.Y., Wu, T.Y., Juan, J.C., “An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant”, Chemical Engineering Journal, 317, 586-612, 2017. Doi: https://doi.org/10.1016/j.cej.2017.01.001
  • [ 14] Teh, C.Y., Wu, T.Y., Juan, J.C., “Facile sonochemical synthesis of N,Cl-codoped TiO2: Synthesis effects, mechanism and photocatalytic performance”, Catalysis Today, 256, 365-374, 2015. Doi: https://doi.org/10.1016/j.cattod.2015.02.014
  • [ 15] Ullah, R., Dutta, J.,“Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles”, Journal of Hazardous Materials, 156,194-200,2008. Doi: https://doi.org/10.1016/ j.jhazmat. 2007.12.033
  • [16 ] Zhang, G., Gao, Y., Zhang, Y., Guo, Y., “Fe2O3-Pillared Rectorite as an Efficient and Stable Fenton-Like Heterogeneous Catalyst for Photodegradation of Organic Contaminants”, Environmental Science Technology, 44, 6384-6389, 2010. Doi: https://doi.org/10.1021/ es1011093
  • [17 ] Li, X., Zhu, J., Li, H., “Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS”, Applied Catalysis B: Environmental, B 123, 174, 2012. Doi: https://doi.org/10.1016/j.apcatb.2012.04.009
  • [ 18] Gong, D.G., Highfield, J.G., Ng, S.Z.E., Tang, Y.X., Ho, W.C.J., Tay, Q.L., Chen, Z., “Poly Tristriazines as visible light sensitizers in Titania-based composite photocatalysts: Promotion of Melon development from urea over acid Titanates”, ACS Sustainable Chemistry & Engineering, 2, 149–157, 2014. Doi: https://doi.org/10.1021/sc400162p
  • [19 ] Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., Antonietti, M., “A metal-free polymeric photocatalyst for hydrogen production from water under visible light”, Nature Materials. 8, 76–80, 2009. Doi: https://doi.org/10.1038/nmat2317
  • [ 20] Li, Y.N., Wang, M.Q., Bao, S.J., Lu, S.Y., Xu, M.W., Long, D.B., Pu, S.H.. “Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity”, Ceramics International, 42, 18521-18528, 2016. Doi: https://doi.org/10.1016/ j.ceramint.2016.08.190
  • [21 ] Chen, Y., Wang, X.C., “Template-free synthesis of hollow g-C3N4 polymer with vesicle structure for enhanced photocatalytic water splitting”, The Journal of Physical Chemistry C, 122, 3786-3793, 2018. Doi: https://doi.org/10.1021/acs.jpcc.7b12496
  • [ 22] Li, J.L., Liu, T., Sui, G.Z., Zhen, D.S., “Photocatalytic performance of a Nd-SiO2-TiO2 nanocomposite for degradation of Rhodamine B dye wastewater”, Journal Nanoscience And Nanotechnology,15, 1408-1415, 2015. Doi: https://doi.org/10.1166/jnn.2015.9611
  • [ 23] Wang, J., Wang, G.H., Wei, X.H., Liu, G., Li, J., “ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB”, Applied Surface Science, 456, 666-675, 2018. Doi: https://doi.org/10.1016/ J.APSUSC.2018.06.182
  • [ 24] Zhou, W., Li, W., Wang, J.Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K.F., Wang, L., Fu, H.G., Zhao, D.Y., “Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst”, Journal of the American Chemical Society, 136, 9280-9283, 2014. Doi: https://doi.org/10.1021/ ja504802q
  • [ 25] Thompson, T.L., Yates, J.T., “Surface science studies of the photoactivation of TiO2-New photochemical processes”, Chemical Reviews. 38, 4428-4453, 2006. Doi: https://doi.org/10.1021/ cr050172k
  • [ 26] Tong, Z.W., Yang, D., Xiao, T.X., Tian, Y., Jiang, Z.Y., “Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation”, Chemical Engineering. Journal, 260, 117-125, 2015. Doi: https://doi.org/10.1016/ j.cej.2014.08.072
  • [ 27] Lu, N., Wang, C.Y., Sun, B., Gao, Z.M., Su, Y., “Fabrication of TiO2-doped single layer graphitic-C3N4 and its visible-light photocatalytic activity”, Separation And Purification Technology. 286 (2017) 226-232. Doi: https://doi.org/10.1016/j.seppur.2017.06.008
  • [ 28] Tan, Y.G., Shu, Z., Zhou, J., Li, T.T., Wang, W.B., Zhao, Z.L., “One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution”, Application Catalyst B-environmental. 230, 260–268, 2018. Doi: https://doi.org/10.1016/J.APCATB.2018.02.056
  • [ 29] Li, J.L., Du, L.J., Jia, S.Q., Sui, G.Z., Zhang, Y. L., Zhuang, Y., Li, B.X., Xing, Z.Y.. “Synthesis and photocatalytic properties of visible light-responsive, three-dimensional, flower-like La–TiO2/g-C3N4 heterojunction composites”, RSC Advances, 8, 29654-29653, 2018. Doi: https://doi.org/10.1039/ c8ra06466k
  • [ 30] Das, T. K., Banerjee, S., Vishwanadh, B., Joshi, R., Sudarsan, V., “On the nature of interaction between Pd nanoparticles and C3N4 support”, Solid State Sciences, 83, 70–75, 2018. Doi: https://doi.org/10.1016/ j.solidstatesciences.2018.06.011
  • [ 31] Ming Lei, Zhiying Wang, Lihua Zhu, Wenshan Nie, Heqing Tang, “Complete debromination of 2,2′,4,4′-tetrabromodiphenyl eth1er by visible-light photocatalysis on g-C3N4 supported Pd”, Applied Catalysis B: Environmental, 261, 118-236, 2020. Doi: https://doi.org/10.1016/ j.apcatb.2019.118236
  • [ 32] Hosseini S. M., Ghiaci M., Farrokhpour H., “The adsorption of small size Pd clusters on a g-C3N4 quantum dot: DFT and TD-DFT study”, Materials Research Express, 6, 105079, 2019. Doi: https://doi.org/10.1088/ 2053-1591/ab3cbd
  • [ 33] Guo Y., Xiao L., Zhang M., Li Q., Yang J., “An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance, Applied Surface Science, 440, 432–439, 2018. Doi: https://doi.org/10.1016/j.apsusc.2018.01.144
  • [ 34] R.A. Senthil, J. Theerthagiri, A. Selvi, J. Madhavan, “Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation”, Optical Materials, 64, 533-539, 2017. Doi: http://dx.doi.org/10.1016/j.optmat. 2017.01.025
  • [ 35] R.A. Senthil, J. Theerthagiri, A. Selvi, J. Madhavan, “Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation”, Optical Materials, 64, 533-539, 2017. Doi: http://dx.doi.org/10.1016/j.optmat. 2017.01.025
  • [ 36] Çelebi, M., Yurderi, M., Bulut A., Kaya, M., Zahmakıran, M., “Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction” Applied Catalysis B: Environmental, 180, 53-64, 2016. Doi: https://doi.org/10.1016/j.apcatb.2015.06.020
  • [ 37] Yan, H., Yan, H., “TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation”, Journal of Alloys and Compounds, 509, 26- 29, 2011. Doi: https://doi.org/ 10.1016/j.jallcom.2010.09.201
  • [ 38] Sabri, N.A., Nawi, M.A., Nawawi, W.I., “Porous immobilized C coated N doped TiO2 containing in-situ generated polyenes for enhanced visible light photocatalytic activity”, Optical Materials, 48, 258-266, 2015. Doi: 10.1016/j.optmat.2015.08.010
  • [ 39] Zhang, Q., Meng, G., Wu, J., Li, D., Liu, Z., “Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core–shell nanostructure”, Optical Materials, 46,52-58, 2015. Doi: https://doi.org/10.1016/j.optmat.2015.04.001
  • [ 40] R.A. Senthil, J. Theerthagiri, A. Selvi, J. Madhavan, “Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation”, Optical Materials, 64, 533-539, 2017. Doi: http://dx.doi.org/10.1016/j.optmat. 2017.01.025
  • [ 41] Yu Y., Zhao Y., Huang T., Liu H., “Shape-controlled synthesis of palladium nanocrystals by microwave irradiation”, Pure Applied Chemistry, 81, 2377–2385, 2009. Doi:10.1351/PAC-CON-08-11-22
  • [ 42] Ghorbani S., Parnian R., Soleimani E. “Pd nanoparticles supported on pyrazolone-functionalized hollow mesoporous silica as an excellent heterogeneous nanocatalyst for the selective oxidation of benzyl alcohol”, Journal of Organometallic Chemistry, 952, 1, 122025, 2021. Doi: https://doi.org/ 10.1016/j.jorganchem.2021.122025
There are 42 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Article
Authors

Halil İbrahim Önal 0000-0003-3577-4615

Feyyaz Durap 0000-0003-0899-1948

Project Number DUBAP Project No: FEN.19.012
Publication Date December 30, 2021
Submission Date October 1, 2021
Acceptance Date December 20, 2021
Published in Issue Year 2021

Cite

IEEE H. İ. Önal and F. Durap, “INVESTIGATION OF Pd@g-C3N4/TiO2 NANOPARTICLES AS PHOTOCATALYST IN THE DEGRADATION OF METHYLENE BLUE UNDER VISIBLE LIGHT IRRADIATION”, MEJS, vol. 7, no. 2, pp. 100–111, 2021, doi: 10.51477/mejs.1003369.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png