Research Article
BibTex RIS Cite

BIOSENSOR PROPERTIES OF PLASMONIC SILVER NANOPARTICLES PRODUCED BY PLD

Year 2021, , 112 - 122, 30.12.2021
https://doi.org/10.51477/mejs.1013013

Abstract

Plasmonic metal nanoparticles (NPs), such as Ag, Au, Cu NPs, attracts a lot of interest due to their notable applications in biological, and chemical sensing. Researchers have studied on plasmonic metal NPs which have exceptional optical properties in a large spectral region. Metal NPs form a unique surface plasmon resonance (SPR) peak that is in the electromagnetic spectrum’s visible part. The peak of SPR firmly depends on the NP’s size, shape, dielectric constant, and medium that the particle is in. Light interacts with nanoparticles that are smaller than the wavelength of incident light in localized surface resonance. That leads Localised Surface Plasmon Resonance (LSPR) in which an oscillating local plasma around NP with a certain frequency form. LSPR detection is the most common method for wavelength shift measurement. Analyte absorption causes a change in the local dielectric constant and thus LSPR peak shifts. Biological molecules such as proteins and antibodies can sensitively be detected as they change the local dielectric environment. Therefore, Ag or Au metal NPs can be used as sensor by employing LSPR wavelength shift technique. Among the metal NPs, Ag has a relatively higher refractive index sensitivity. Since Ag NPs have a shaper LSPR peak, they generate more precise measurements. In our work, we have produced plasmonic Ag NPs with various sizes and spherical shapes by employing Pulsed Laser Deposition (PLD). We investigated the LSPR peaks of produced plasmonic Ag NPs by UV-Vis spectroscopy. Moreover, biosensor properties of plasmonic Ag NPs are investigated by binding Protein A molecules to surface of the NPs. That produced a LSPR wavelength shift of around 100 nm/RIU.

Supporting Institution

Dicle University Scientific Research Projects Coordinatorship

Project Number

FEN.006

References

  • C.-T. Liu, and A.-N. Tang, “Applications of nanoparticles in elemental speciation,” Analytical Letters, vol. 48, no. 7, pp. 1031-1043, 2015.
  • N. Li, D. Liu, and H. Cui, “Metal-nanoparticle-involved chemiluminescence and its applications in bioassays,” Analytical and bioanalytical chemistry, vol. 406, no. 23, pp. 5561-5571, 2014.
  • C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics," ACS Publications, 2001.
  • A. R. Tao, S. Habas, and P. Yang, “Shape control of colloidal metal nanocrystals,” small, vol. 4, no. 3, pp. 310-325, 2008.
  • E. Ringe, B. Sharma, A.-I. Henry et al., “Single nanoparticle plasmonics,” Physical Chemistry Chemical Physics, vol. 15, no. 12, pp. 4110-4129, 2013.
  • A. Powell, M. Wincott, A. Watt et al., “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” Journal of Applied Physics, vol. 113, no. 18, pp. 184311, 2013.
  • A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” Journal of Materials Chemistry C, vol. 1, no. 18, pp. 3150-3157, 2013. T. Ahmad, I. A. Wani, J. Ahmed et al., “Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions,” Applied Nanoscience, vol. 4, no. 4, pp. 491-498, 2014.
  • W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” The Journal of Physical Chemistry C, vol. 113, no. 13, pp. 5120-5125, 2009.
  • M. M. Miller, and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B, vol. 109, no. 46, pp. 21556-21565, 2005.
  • A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Accounts of chemical research, vol. 33, no. 1, pp. 27-36, 2000.
  • M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Accounts of chemical research, vol. 34, no. 4, pp. 257-264, 2001.
  • L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chemical Reviews, vol. 93, no. 8, pp. 2693-2730, 1993.
  • T. Tani, Silver nanoparticles: from silver halide photography to plasmonics: Oxford University Press, USA, 2015.
  • S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss et al., “Submicrometer metallic barcodes,” Science, vol. 294, no. 5540, pp. 137-141, 2001.
  • S. A. Maier, M. L. Brongersma, P. G. Kik et al., “Plasmonics—a route to nanoscale optical devices,” Advanced materials, vol. 13, no. 19, pp. 1501-1505, 2001.
  • P. V. Kamat, "Photophysical, photochemical and photocatalytic aspects of metal nanoparticles," ACS Publications, 2002.
  • C. Murray, S. Sun, H. Doyle et al., “Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly intonanoparticle superlattices,” Mrs Bulletin, vol. 26, no. 12, pp. 985-991, 2001.
  • S. Nie, and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” science, vol. 275, no. 5303, pp. 1102-1106, 1997.
  • L. A. Dick, A. D. McFarland, C. L. Haynes et al., “Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss,” The Journal of Physical Chemistry B, vol. 106, no. 4, pp. 853-860, 2002.
  • K. M. Mayer, and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical reviews, vol. 111, no. 6, pp. 3828-3857, 2011.
  • C. W. Hsu, B. G. DeLacy, S. G. Johnson et al., “Theoretical criteria for scattering dark states in nanostructured particles,” Nano letters, vol. 14, no. 5, pp. 2783-2788, 2014.
  • T. R. Jensen, M. L. Duval, K. L. Kelly et al., “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” The Journal of Physical Chemistry B, vol. 103, no. 45, pp. 9846-9853, 1999.
  • K. Hamamoto, R. Micheletto, M. Oyama et al., “An original planar multireflection system for sensing using the local surface plasmon resonance of gold nanospheres,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 3, pp. 268, 2006.
  • G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys, vol. 25, no. 3, pp. 377-445, 1908.
  • I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics, vol. 28, no. 3, pp. 214-242, 2008.
  • D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 158-177, 2007. F. S. R. R. Teles, “Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: A review,” Analytica chimica acta, vol. 687, no. 1, pp. 28-42, 2011.
  • P. Leonard, S. Hearty, J. Brennan et al., “Advances in biosensors for detection of pathogens in food and water,” Enzyme and Microbial Technology, vol. 32, no. 1, pp. 3-13, 2003.
  • A. Olaru, C. Bala, N. Jaffrezic-Renault et al., “Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis,” Critical reviews in analytical chemistry, vol. 45, no. 2, pp. 97-105, 2015.
  • R. G. Smith, N. D'Souza, and S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst, vol. 133, no. 5, pp. 571-584, 2008.
  • W. Haiss, N. T. Thanh, J. Aveyard et al., “Determination of size and concentration of gold nanoparticles from UV− Vis spectra,” Analytical chemistry, vol. 79, no. 11, pp. 4215-4221, 2007.
Year 2021, , 112 - 122, 30.12.2021
https://doi.org/10.51477/mejs.1013013

Abstract

Project Number

FEN.006

References

  • C.-T. Liu, and A.-N. Tang, “Applications of nanoparticles in elemental speciation,” Analytical Letters, vol. 48, no. 7, pp. 1031-1043, 2015.
  • N. Li, D. Liu, and H. Cui, “Metal-nanoparticle-involved chemiluminescence and its applications in bioassays,” Analytical and bioanalytical chemistry, vol. 406, no. 23, pp. 5561-5571, 2014.
  • C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics," ACS Publications, 2001.
  • A. R. Tao, S. Habas, and P. Yang, “Shape control of colloidal metal nanocrystals,” small, vol. 4, no. 3, pp. 310-325, 2008.
  • E. Ringe, B. Sharma, A.-I. Henry et al., “Single nanoparticle plasmonics,” Physical Chemistry Chemical Physics, vol. 15, no. 12, pp. 4110-4129, 2013.
  • A. Powell, M. Wincott, A. Watt et al., “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” Journal of Applied Physics, vol. 113, no. 18, pp. 184311, 2013.
  • A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” Journal of Materials Chemistry C, vol. 1, no. 18, pp. 3150-3157, 2013. T. Ahmad, I. A. Wani, J. Ahmed et al., “Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions,” Applied Nanoscience, vol. 4, no. 4, pp. 491-498, 2014.
  • W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” The Journal of Physical Chemistry C, vol. 113, no. 13, pp. 5120-5125, 2009.
  • M. M. Miller, and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B, vol. 109, no. 46, pp. 21556-21565, 2005.
  • A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Accounts of chemical research, vol. 33, no. 1, pp. 27-36, 2000.
  • M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Accounts of chemical research, vol. 34, no. 4, pp. 257-264, 2001.
  • L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chemical Reviews, vol. 93, no. 8, pp. 2693-2730, 1993.
  • T. Tani, Silver nanoparticles: from silver halide photography to plasmonics: Oxford University Press, USA, 2015.
  • S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss et al., “Submicrometer metallic barcodes,” Science, vol. 294, no. 5540, pp. 137-141, 2001.
  • S. A. Maier, M. L. Brongersma, P. G. Kik et al., “Plasmonics—a route to nanoscale optical devices,” Advanced materials, vol. 13, no. 19, pp. 1501-1505, 2001.
  • P. V. Kamat, "Photophysical, photochemical and photocatalytic aspects of metal nanoparticles," ACS Publications, 2002.
  • C. Murray, S. Sun, H. Doyle et al., “Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly intonanoparticle superlattices,” Mrs Bulletin, vol. 26, no. 12, pp. 985-991, 2001.
  • S. Nie, and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” science, vol. 275, no. 5303, pp. 1102-1106, 1997.
  • L. A. Dick, A. D. McFarland, C. L. Haynes et al., “Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss,” The Journal of Physical Chemistry B, vol. 106, no. 4, pp. 853-860, 2002.
  • K. M. Mayer, and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical reviews, vol. 111, no. 6, pp. 3828-3857, 2011.
  • C. W. Hsu, B. G. DeLacy, S. G. Johnson et al., “Theoretical criteria for scattering dark states in nanostructured particles,” Nano letters, vol. 14, no. 5, pp. 2783-2788, 2014.
  • T. R. Jensen, M. L. Duval, K. L. Kelly et al., “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” The Journal of Physical Chemistry B, vol. 103, no. 45, pp. 9846-9853, 1999.
  • K. Hamamoto, R. Micheletto, M. Oyama et al., “An original planar multireflection system for sensing using the local surface plasmon resonance of gold nanospheres,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 3, pp. 268, 2006.
  • G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys, vol. 25, no. 3, pp. 377-445, 1908.
  • I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics, vol. 28, no. 3, pp. 214-242, 2008.
  • D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 158-177, 2007. F. S. R. R. Teles, “Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: A review,” Analytica chimica acta, vol. 687, no. 1, pp. 28-42, 2011.
  • P. Leonard, S. Hearty, J. Brennan et al., “Advances in biosensors for detection of pathogens in food and water,” Enzyme and Microbial Technology, vol. 32, no. 1, pp. 3-13, 2003.
  • A. Olaru, C. Bala, N. Jaffrezic-Renault et al., “Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis,” Critical reviews in analytical chemistry, vol. 45, no. 2, pp. 97-105, 2015.
  • R. G. Smith, N. D'Souza, and S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst, vol. 133, no. 5, pp. 571-584, 2008.
  • W. Haiss, N. T. Thanh, J. Aveyard et al., “Determination of size and concentration of gold nanoparticles from UV− Vis spectra,” Analytical chemistry, vol. 79, no. 11, pp. 4215-4221, 2007.
There are 30 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Article
Authors

İlhan Candan 0000-0001-9489-5324

Serap Yiğit Gezgin 0000-0003-3046-6138

Yasemin Gündoğdu 0000-0003-2020-9533

Hadice Budak Gümgüm 0000-0003-1993-5247

Project Number FEN.006
Publication Date December 30, 2021
Submission Date October 23, 2021
Acceptance Date December 22, 2021
Published in Issue Year 2021

Cite

IEEE İ. Candan, S. Yiğit Gezgin, Y. Gündoğdu, and H. Budak Gümgüm, “BIOSENSOR PROPERTIES OF PLASMONIC SILVER NANOPARTICLES PRODUCED BY PLD”, MEJS, vol. 7, no. 2, pp. 112–122, 2021, doi: 10.51477/mejs.1013013.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png