Even though fungal proteases under interest, bulk fungal growth during the productions decreases the overall mass transfer and consequently the yield. In this study, instead of inorganic microparticles, various organic microparticles were used in the production medium to prevent bulky fungal growth and increase the homogeneity. Results showed that all microparticle additions did not only increased the maximum enzyme activity but also decreased the required time to reach the highest value. Among organic microparticle addition productions, the highest protease activity was reported as 100,76 U/ml in walnut shells added flasks, which was approximately 1,4 fold higher compared to highest activity obtained in the control production. It was also reported that microparticle addition increased the homogeneity but also resulted in higher viscosity due to hyphae type growth. Additionally, evaluation of various storage temperatures showed that produced enzyme lost only its 7% activity at 4oC at the end of 25 days.
I would like to thank Prof. Dr. Gülşad Uslu Şenel from Firat University, Environmental Engineering Department for providing the fungal strain, which was used in this study and also Ass. Prof. Dr. Hatice Güneş Özhan, who shared her laboratory with me in Izmir Biomedicine and Genome Center.
References
1. Purushothaman, K., Bhat, S.K., Singh, S.A., Marathe, G.K., Rao, A.R.G.A., “Aspartic protease from Aspergillus niger: Molecular characterization and interaction with pepstatin A.”, International Journal of Biological Macromolecules, 139, 199-212, 2019. Doi: 10.1016/j.ijbiomac.2019.07.133
2. Siala, R., Frikha, F., Mhamdi, S., Nasri, M., Kamoun, A.S., “Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design.”, The Scientific World Journal, 2012. Doi: 10.1100/2012/564932
3. Yin, L.J., Hsu, T.H., Jiang, S.T., “Characterization of acidic protease from Aspergillus niger BCRC 32720.”, Journal of Agricultural and Food Chemisty, 61(3), 662-666, 2013. Doi: 10.1021/jf3041726
4. Karahalil, E., Coban, H.B., Turhan, I. “A current approach to the control of filamentous fungal growth in media: microparticle enhanced cultivation technique.”, Critical Reviews in Biotechnology, 39(2), 192-201, 2019. Doi: 10.1080/07388551.2018.1531821
5. Coban, H.B, Demirci, A., “Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production.”, Bioprocess and Biosystems Engineering, 39(2), 323-330, 2016. Doi: 10.1007/s00449-015-1518-0
6. Coban, H.B., Demirci, A., Turhan, I., “Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.”, Bioprocess and Biosystems Engineering, 38(6):1075-1080, 2015. Doi: 10.1007/s00449-014-1349-4
7. Coban, H.B., Demirci, A., Turhan, I., “Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles.”, Bioprocess and Biosystems Engineering, 38(8), 1431-1436, 2015. Doi: 10.1007/s00449-015-1384-9
8. Kaup, J.A., Ehrich, K., Pescheck, M., Schrader, J., “Microparticle-enhanced cultivation of filamentous microorganisms: Increased chloroperoxidase formation by Caldariomyces fumago as an example.”, Biotechnology and Bioengineering, 99(3):491-498, 2008. Doi: 10.1002/bit.21713
9. Driouch, H., Hansch, R., Wucherpfennig, T., Krull, R., Wittmann, C., “Improved enzyme production by bio-pellets of Aspergillus niger: Targeted morphology engineering using titanate microparticles.”, Biotechnology and Bioengineering, 109(2), 462-471, 2012. Doi: 10.1002/bit.23313
10. Walisko, R., Krull, R., Schrader, J., Wittmann, C., “Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production.”, Biotechnology Letters, 34(11), 1975-1982, 2012. Doi: 10.1007/s10529-012-0997-1
11. Driouch, H., Roth, A., Dersch, P., Wittmann, C., “Filamentous fungi in good shape: Microparticles for tailor-made fungal morphology and enhanced enzyme production.”, Bioengineered Bugs, 2(2), 100-104, 2011. Doi:10.4161/bbug.2.2.13757
12. Vaithanomsat, P., Malapant, T., Apiwattanapiwat, W., “Silk degumming solution as substrate for microbial protease production.”, Kasetsart Journal - Natural Science, 42, 543-551, 2008, Doi:10.1016/j.jbiotec.2008.07.1967
13. de Jesus, S.S., Neto, J.M., Maciel, R., “Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study.”, Biochemical Engineering Journal, 118, 70-81, 2017. Doi: 10.1016/j.bej.2016.11.019
14. Demirel, F., Germec, M., Coban, H.B., Turhan, I., “Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition.”, Cellulose, 25(11), 6377-6393, 2018. Doi:10.1007/s10570-018-2022-x
15. Cao, E.H., Chen, Y.H., Cui, Z.F., Foster, P.R., “Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions.”, Biotechnology and Bioengineering, 82(6), 684-690, 2003. Doi:10.1002/bit.10612
1. Purushothaman, K., Bhat, S.K., Singh, S.A., Marathe, G.K., Rao, A.R.G.A., “Aspartic protease from Aspergillus niger: Molecular characterization and interaction with pepstatin A.”, International Journal of Biological Macromolecules, 139, 199-212, 2019. Doi: 10.1016/j.ijbiomac.2019.07.133
2. Siala, R., Frikha, F., Mhamdi, S., Nasri, M., Kamoun, A.S., “Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design.”, The Scientific World Journal, 2012. Doi: 10.1100/2012/564932
3. Yin, L.J., Hsu, T.H., Jiang, S.T., “Characterization of acidic protease from Aspergillus niger BCRC 32720.”, Journal of Agricultural and Food Chemisty, 61(3), 662-666, 2013. Doi: 10.1021/jf3041726
4. Karahalil, E., Coban, H.B., Turhan, I. “A current approach to the control of filamentous fungal growth in media: microparticle enhanced cultivation technique.”, Critical Reviews in Biotechnology, 39(2), 192-201, 2019. Doi: 10.1080/07388551.2018.1531821
5. Coban, H.B, Demirci, A., “Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production.”, Bioprocess and Biosystems Engineering, 39(2), 323-330, 2016. Doi: 10.1007/s00449-015-1518-0
6. Coban, H.B., Demirci, A., Turhan, I., “Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.”, Bioprocess and Biosystems Engineering, 38(6):1075-1080, 2015. Doi: 10.1007/s00449-014-1349-4
7. Coban, H.B., Demirci, A., Turhan, I., “Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles.”, Bioprocess and Biosystems Engineering, 38(8), 1431-1436, 2015. Doi: 10.1007/s00449-015-1384-9
8. Kaup, J.A., Ehrich, K., Pescheck, M., Schrader, J., “Microparticle-enhanced cultivation of filamentous microorganisms: Increased chloroperoxidase formation by Caldariomyces fumago as an example.”, Biotechnology and Bioengineering, 99(3):491-498, 2008. Doi: 10.1002/bit.21713
9. Driouch, H., Hansch, R., Wucherpfennig, T., Krull, R., Wittmann, C., “Improved enzyme production by bio-pellets of Aspergillus niger: Targeted morphology engineering using titanate microparticles.”, Biotechnology and Bioengineering, 109(2), 462-471, 2012. Doi: 10.1002/bit.23313
10. Walisko, R., Krull, R., Schrader, J., Wittmann, C., “Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production.”, Biotechnology Letters, 34(11), 1975-1982, 2012. Doi: 10.1007/s10529-012-0997-1
11. Driouch, H., Roth, A., Dersch, P., Wittmann, C., “Filamentous fungi in good shape: Microparticles for tailor-made fungal morphology and enhanced enzyme production.”, Bioengineered Bugs, 2(2), 100-104, 2011. Doi:10.4161/bbug.2.2.13757
12. Vaithanomsat, P., Malapant, T., Apiwattanapiwat, W., “Silk degumming solution as substrate for microbial protease production.”, Kasetsart Journal - Natural Science, 42, 543-551, 2008, Doi:10.1016/j.jbiotec.2008.07.1967
13. de Jesus, S.S., Neto, J.M., Maciel, R., “Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study.”, Biochemical Engineering Journal, 118, 70-81, 2017. Doi: 10.1016/j.bej.2016.11.019
14. Demirel, F., Germec, M., Coban, H.B., Turhan, I., “Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition.”, Cellulose, 25(11), 6377-6393, 2018. Doi:10.1007/s10570-018-2022-x
15. Cao, E.H., Chen, Y.H., Cui, Z.F., Foster, P.R., “Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions.”, Biotechnology and Bioengineering, 82(6), 684-690, 2003. Doi:10.1002/bit.10612
H. B. Çoban, “MODIFICATION OF ASPERGILLUS NIGER ATCC 11414 GROWTH FOR THE ENHANCEMENT OF PROTEASE PRODUCTION BY THE EFFECT OF NATURAL MICROPARTICLES”, MEJS, vol. 8, no. 2, pp. 99–105, 2022, doi: 10.51477/mejs.1109174.