Research Article
BibTex RIS Cite

IDENTIFICATION OF RISK FACTORS FOR CEREBRAL ANEURYSM RUPTURE THROUGH STATISTICAL ANALYSIS

Year 2025, Volume: 11 Issue: 2, 306 - 320, 30.12.2025
https://doi.org/10.51477/mejs.1658742

Abstract

This study examines the relationship between clinical, morphological, and hemodynamic factors and the risk of rupture in individuals with cerebral aneurysms. A logistic regression model was developed to identify variables influencing aneurysm rupture. The results indicate that age (p=0.0074) and comorbidities (p=0.0157) have a statistically significant effect on rupture probability. Variance Inflation Factor (VIF) analysis revealed multicollinearity between the length and width variables (VIF=3.96), while no such relationship was detected for other variables. Chi-square and Mann-Whitney U tests confirmed that age, aneurysm type, and comorbidities differ significantly between patients with and without rupture (p<0.05). Post-hoc analysis further supported statistically significant differences between groups concerning age (p=0.0001), aneurysm type (p=0.0004), and comorbidities (p=0.0039). Fisher’s exact test demonstrated a significant association between rupture risk and variables such as diabetes, ischemic cerebrovascular disease, a history of ischemic stroke, and coronary artery predisposition (p<0.05). This comprehensive analysis highlights the critical role of age, aneurysm type, and specific comorbidities in determining the risk of cerebral aneurysm rupture.

Ethical Statement

The author declares that this study required ethics committee approval. The Fırat University Non-Interventional Studies Ethics Committee approved the use of the data in this study with the board decision numbered 2020/12-04, dated September 17, 2020.

Thanks

The authors would like to thank Sait Öztürk for his contributions to the information provided regarding patients with cerebral aneurysms.

References

  • Cinar C, Oran I., “Intrakraniyal Dissekan ve Travmatik Anevrizmalarda Tedavi”. Türk Radyoloji, 10(1), 115-127, 2022. https://doi.org/10.5152/trs.2022.220754.
  • Yavuz Çelikdemir M, Akbal A. “An Accurate Aneurysm Detection Model based on Artificial Intelligence”. Muş Alparslan Üniversitesi Fen Bilim Derg, 13(2), 224-237, 2025. https://doi.org/10.18586/msufbd.1686309.
  • Çelikdemir MY, Akbal A. “Determination of the Rupture Risk of Cerebral Aneurysms via the Application of a Narrow Neural Network Classifier”. Trait Du Signal, 42, 875-885, 2025. https://doi.org/10.18280/ts.420224.
  • Li MH, Chen SW, Li YD, Chen YC, Cheng YS, Hu DJ, et al. “Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: A cross-sectional study”. Ann Intern Med, 159(8), 2013. https://doi.org/10.7326/0003-4819-159-8-201310150-00004.
  • Wei X, Jiang J, Cao W, Yu H, Deng H, Chen J, et al. “Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography”. Eur J Radiol, 149, 2022. https://doi.org/10.1016/j.ejrad.2022.110169.
  • Greving JP, Wermer MJH, Brown RD, Morita A, Juvela S, Yonekura M, et al. “Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies”. Lancet Neurol, 13(1), 59-66, 2014. https://doi.org/10.1016/S1474-4422(13)70263-1.
  • Mensah E, Pringle C, Roberts G, Gurusinghe N, Golash A, Alalade AF. “Deep Learning in the Management of Intracranial Aneurysms and Cerebrovascular Diseases: A Review of the Current Literature”. World Neurosurg, 161, 39-45, 2022. https://doi.org/10.1016/j.wneu.2022.02.006.
  • Gu F, Wu X, Wu W, Wang Z, Yang X, Chen Z, et al. “Performance of deep learning in the detection of intracranial aneurysm: A systematic review and meta-analysis”. Eur J Radiol, 155, 2022. https://doi.org/10.1016/j.ejrad.2022.110457.
  • Yavuz Çelikdemir M, Akbal A. “A Deep Learning Based on Automatic Cerebral Aneurysm Detection in Brain Computed Tomography Angiography Scan Images”. J Polytech, 28(1), 147-157, 2024. https://doi.org/10.2339/politeknik.1261854.
  • Kaya V. “Anterior Kommunikan Arter ve Anterior Kommunikan Arter İle İlişkili Anterior Sistem Anevrizmalarında Morfolojik Ve Hemodinamik Faktörlerin Anevrizma Rüptürü İle İlişkisi”, Ph. D. thesis, İnönü University, Malatya, Türkiye, 2018.
  • Etminan N, Rinkel GJ. “Unruptured intracranial aneurysms: development, rupture and preventive management”. Nat Rev Neurol, 12, 699-713, 2016. https://doi.org/10.1038/nrneurol.2016.150.
  • Algra AM, Lindgren A, Vergouwen MDI, Greving JP, van der Schaaf IC, van Doormaal TPC, et al. “Procedural Clinical Complications, Case-Fatality Risks, and Risk Factors in Endovascular and Neurosurgical Treatment of Unruptured Intracranial Aneurysms”. JAMA Neurol, 76(3), 282-293, 2019. https://doi.org/10.1001/jamaneurol.2018.4165.
  • Lee G-J, Eom K-S, Lee C, Kim D-W, Kang S-D. “Rupture of Very Small Intracranial Aneurysms: Incidence and Clinical Characteristics”. J Cerebrovasc Endovasc Neurosurg, 17(3), 217-222, 2015. https://doi.org/10.7461/jcen.2015.17.3.217.
  • Liang L, Liu M, Martin C, Elefteriades JA, Sun W. “A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm”. Biomech Model Mechanobiol, 16, 1519-1533, 2017. https://doi.org/10.1007/s10237-017-0903-9.
  • Thompson BG, Brown RD, Amin-Hanjani S, Broderick JP, Cockroft KM, Connolly ES, et al. “Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms”. Stroke 46(8), 2368-2400, 2015. https://doi.org/10.1161/STR.0000000000000070.
  • Morita A, Fujiwara S, Hashi K, Ohtsu H, Kirino T. “Risk of rupture associated with intact cerebral aneurysms in the Japanese population: a systematic review of the literature from Japan”. J Neurosurg 102(4), 601-606, 2005. https://doi.org/10.3171/jns.2005.102.4.0601.
  • Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson M, Homo R, et al. “Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT”. Am J Neuroradiol 39(9), 1609-1616, 2018. https://doi.org/10.3174/ajnr.A5742.
  • Lawton MT, Vates GE. “Subarachnoid Hemorrhage”. N Engl J Med, 377(3), 257-266, 2017. https://doi.org/10.1056/NEJMcp1605827.
  • Rostamian A, Fallah K, Rostamiyan Y, Alinejad J. “Application of computational fluid dynamics for detection of high risk region in middle cerebral artery (MCA) aneurysm”. Int J Mod Phys C 34(2), 2023. https://doi.org/10.1142/S0129183123500195.
  • Lin M, Xia N, Lin R, Xu L, Chen Y, Zhou J, et al. “Machine learning prediction model for the rupture status of middle cerebral artery aneurysm in patients with hypertension: a Chinese multicenter study”. Quant Imaging Med Surg 13(8), 4867-4878, 2023. https://doi.org/10.21037/qims-22-918.
  • Nishiwaki T, Ikedo T, Kushi Y, Shimonaga K, Kobayashi H, Itazu T, et al. “Hemodynamic differences determining rupture and non-rupture in middle cerebral aneurysms after growth”. PLoS One, 19 (8), :e0307495, 2024. https://doi.org/10.1371/journal.pone.0307495.
  • Di Noto T, Marie G, Tourbier S, Alemán-Gómez Y, Esteban O, Saliou G, et al. “Towards Automated Brain Aneurysm Detection in TOF-MRA: Open Data, Weak Labels, and Anatomical Knowledge”. Neuroinformatics, 21, 21-34, 2023. https://doi.org/10.1007/s12021-022-09597-0.
  • Shen J, Huang K, Zhu Y, Weng Y, Xiao F, Mungur R, et al. “Mean arterial pressure-aneurysm neck ratio predicts the rupture risk of intracranial aneurysm by reflecting pressure at the dome”. Front Aging Neurosci, 15, 2023. https://doi.org/10.3389/fnagi.2023.1082800.
  • Molenberg R, Aalbers MW, Mazuri A, Luijckx GJ, Metzemaekers JDM, Groen RJM, et al. “The Unruptured Intracranial Aneurysm Treatment Score as a predictor of aneurysm growth or rupture”. Eur J Neurol, 28 (3), 837-843, 2021. https://doi.org/10.1111/ene.14636.
  • Tanioka S, Ishida F, Yamamoto A, Shimizu S, Sakaida H, Toyoda M, et al. “Machine Learning Classification of Cerebral Aneurysm Rupture Status with Morphologic Variables and Hemodynamic Parameters”. Radiol Artif Intell, 2(1), 2020, e190077. https://doi.org/10.1148/ryai.2019190077.
  • Silva MA, Patel J, Kavouridis V, Gallerani T, Beers A, Chang K, et al. “Machine Learning Models can Detect Aneurysm Rupture and Identify Clinical Features Associated with Rupture”. World Neurosurg, 131, 46-51, 2019. https://doi.org/10.1016/j.wneu.2019.06.231.
  • Ou C, Qian Y, Chong W, Hou X, Zhang M, Zhang X, et al. “A deep learning–based automatic system for intracranial aneurysms diagnosis on three‐dimensional digital subtraction angiographic images”. Med Phys, 49(11), 7038-7053, 2022. https://doi.org/10.1002/mp.15846.
  • Ivantsits M, Goubergrits L, Kuhnigk JM, Huellebrand M, Bruening J, Kossen T, et al. “Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge”. Med Image Anal, 77, 2022. https://doi.org/10.1016/j.media.2021.102333.
  • Sathish Kumar L, Hariharasitaraman S, Narayanasamy K, Thinakaran K, et al., Pandimurugan V. “AlexNet approach for early stage Alzheimer’s disease detection from MRI brain images”. Mater. Today Proc., 51(1), 58-65, 2021. https://doi.org/10.1016/j.matpr.2021.04.415.
There are 29 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Meltem Yavuz Çelikdemir 0000-0003-0552-2601

Ayhan Akbal 0000-0001-5385-9781

Submission Date March 15, 2025
Acceptance Date July 16, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

IEEE M. Yavuz Çelikdemir and A. Akbal, “IDENTIFICATION OF RISK FACTORS FOR CEREBRAL ANEURYSM RUPTURE THROUGH STATISTICAL ANALYSIS”, MEJS, vol. 11, no. 2, pp. 306–320, 2025, doi: 10.51477/mejs.1658742.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png