Research Article
BibTex RIS Cite

ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF NOVEL S-ALKYLATED AND REDUCED SCHIFF BASE 1,2,4-TRIAZOLE DERIVATIVES

Year 2025, Volume: 11 Issue: 2, 212 - 227, 30.12.2025
https://doi.org/10.51477/mejs.1804747

Abstract

In this study, four new 1,2,4-triazole derivatives (5–8) were designed, synthesized, and structurally characterized through FT-IR, ¹H-NMR, and ¹³C-NMR spectroscopic techniques. Antimicrobial properties were evaluated against standard Gram-positive (S. aureus ATCC 25923, S. pyogenes ATCC 19615) and Gram-negative bacteria (E. coli ATCC 25922, P. aeruginosa ATCC 27853), as well as the fungal strain C. albicans ATCC 10231, using the disk diffusion method. Antioxidant activities were assessed via ferric reducing antioxidant power (FRAP) and DPPH radical-scavenging assays. The results demonstrated that the synthesized compounds exhibited selective antimicrobial efficacy. Schiff base derivatives (5, 6) showed notable inhibitory activity against Gram-positive bacteria, particularly S. aureus and S. Pyogenes, while Gram-negative strains displayed intrinsic resistance. Furthermore, compounds 5 and 6 also presented moderate antifungal activity against C. albicans. Antioxidant analyses revealed that compound 6 possessed remarkable reducing capacity (14.166 mg TE/g) and radical-scavenging activity (IC50 = 0.227 mg/mL), outperforming the other derivatives. These findings suggest that structural modifications, particularly the introduction of heptylthio and Schiff base functionalities, play a decisive role in shaping biological activity. Among the tested molecules, compound 6 emerged as the most promising candidate, exhibiting a dual profile of antimicrobial and antioxidant activities. Collectively, this study highlights the potential of 1,2,4-triazole derivatives as versatile scaffolds for the development of new therapeutic agents aimed at addressing infectious diseases and oxidative stress-related pathologies.

Ethical Statement

The ethical committee or legal/special permission is not required for this article.

Supporting Institution

Artvin Coruh University Scientific Research Project Coordination

Project Number

2024.F65.02.03

Thanks

The authors are thankful for the laboratory support from Artvin Coruh University, Science-Technology Research and Application Center, Türkiye.

References

  • Leal, JR., Conly, J., Henderson, EA., & Manns, BJ., “How externalities impact an evaluation of strategies to prevent antimicrobial resistance in health care organizations”, Antimicrobial Resistance & Infection Control, 6(1), 53, 2017. https://doi.org/10.1186/s13756-017-0211-2
  • Economou, V., Gousia, P., “Agriculture and food animals as a source of antimicrobial-resistant bacteria”, Infection and drug resistance, 8, 49-61, 2015. https://doi.org/10.2147/idr.s55778
  • Zhang, N., Liu, E., Tang, A., Ye, MC., Wang, K., Jia, Q., Huang, Z. “Data-driven analysis of antimicrobial resistance in foodborne pathogens from six states within the US”, International Journal of Environmental Research and Public Health, 16(10), 1811, 2019. https://doi.org/10.3390/ijerph16101811
  • Nyenye, L., Nwako, AB., ”Antimicrobial Resistance: Unexplained Failure to Antibiotic Therapy in a Case at Maluti Adventist Hospital Berea Lesotho”, Journal of Advances in Medical and Pharmaceutical Sciences, 24(6), 1-4, 2022. https://doi.org/10.9734/jamps/2022/v24i630305
  • Liu, T., Xiao, B., Xiang, F., Tan, J., Chen, Z., Zhang, X., ... & Deng, J., “Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases”, Nature communications, 11(1), 2788, 2020. https://doi.org/10.1038/s41467-020-16544-7
  • Canbolat, D., Turan, İ., Küpeli, YE., Kılınç, S., Piliç, S., “Artvin Şavşat Yöresi Propolisinin Farklı Sıcaklıklarda Hazırlanan PBS’li Ekstraktlarının Antioksidan Özelliklerinin ve Eritrosit Hemoliz İnhibisyonu Üzerine Etkisinin Araştırılması”, KSÜ Tarım ve Doğa Dergisi, 24, 464-472, 2021. https://doi.org/10.18016/ksutarimdoga.vi.765838
  • Turan, I., Canbolat, D., Demir, S., Kerimoğlu, G., Colak, F., Alemdar, N., Aliyazıcıoğlu, Y., “An investigation of the protective effect of Rhododendron luteum extract on cisplatin-induced DNA damage and nephrotoxicity and biochemical parameters in rats”, Pakistan Veterinary Journal, 43(3), 2023. https://doi.org/10.29261/pakvetj/2023.047
  • Küçükgüzel, Ş. G., Çıkla-Süzgün, P., “Recent advances bioactive 1, 2, 4-triazole-3-thiones”, European journal of medicinal chemistry, 97, 830-870, 2015. https://doi.org/10.1016/j.ejmech.2014.11.033
  • Turan, I., Canbolat, D., Demir, S., Kerimoglu, G., Colak, F., Alemdar, N. T., Aliyazicioglu, Y., “The ameliorative effect of Primula vulgaris on cisplatin-induced nephrotoxicity in rats and quantification of its phenolic components using LC-ESI-MS/MS”, Saudi Pharmaceutical Journal, 31(9), 101730, 2023. https://doi.org/10.1016/j.jsps.2023.101730
  • Pham-Huy, L. A., He, H., Pham-Huy, C., “Free radicals, antioxidants in disease and health”, International journal of biomedical science: IJBS, 4(2), 89, 2008. https://doi.org/10.59566/ijbs.2008.4089
  • Lü, J. M., Lin, P. H., Yao, Q., Chen, C., “Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems”, Journal of cellular and molecular medicine, 14(4), 840-860, 2010. https://doi.org/10.1111/j.1582-4934.2009.00897.x
  • Kumar, P., Kumar, A., Makrandi, JK., “Synthesis and Evaluation of Bioactivity of Thiazolo [3, 2‐b]‐[1, 2, 4]‐triazoles and Isomeric Thiazolo [2, 3‐c]‐[1, 2, 4]‐triazoles”, Journal of Heterocyclic Chemistry, 50(5), 1223-1229, 2013. https://doi.org/10.1002/jhet.1600
  • Popiołek, Ł., Rzymowska, J., Kosikowska, U., Hordyjewska, A., Wujec, M., & Malm, A., “Synthesis, antiproliferative and antimicrobial activity of new Mannich bases bearing 1, 2, 4-triazole moiety”, Journal of Enzyme Inhibition and Medicinal Chemistry, 29(6), 786-795, 2014. https://doi.org/10.3109/14756366.2013.855926
  • Sonawane, AD., Rode, ND., Nawale, L., Joshi, RR., Joshi, RA., Likhite, AP., Sarkar, D., “Synthesis and biological evaluation of 1, 2, 4‐triazole‐3‐thione and 1, 3, 4‐oxadiazole‐2‐thione as antimycobacterial agents”, Chemical Biology & Drug Design, 90(2), 200-209, 2017. https://doi.org/10.1111/cbdd.12939
  • Gonnet, L., Baron, M., Baltas, M., “Synthesis of biologically relevant 1, 2, 3-and 1, 3, 4-triazoles: from classical pathway to green chemistry”, Molecules, 26(18), 5667, 2021. https://doi.org/10.3390/molecules26185667
  • Dai, J., Tian, S., Yang, X., & Liu, Z., “Synthesis methods of 1, 2, 3-/1, 2, 4-triazoles: A review”, Frontiers in Chemistry, 10, 891484, 2022. https://doi.org/10.3389/fchem.2022.891484
  • Zhou, CH., and Wang, Y., “Recent researches in triazole compounds as medicinal drugs”, Current Medicinal Chemistry, 19(2), 239-280, 2012. https://doi.org/10.2174/092986712803414213
  • Peyton, LR., Gallagher, S., Hashemzadeh, M., “Triazole antifungals: a review”, Drugs Today, 51(12), 705-718, 2015. https://doi.org/10.1358/dot.2015.51.12.2421058
  • Guan, Q., Gao, Z., Chen, Y., Guo, C., Chen, Y., Sun, H., “Structural modification strategies of triazoles in anticancer drug development”, European Journal of Medicinal Chemistry, 275, 116578, 2024. https://doi.org/10.1016/j.ejmech.2024.116578
  • Klingele, M. H., Brooker, S., “The coordination chemistry of 4-substituted 3, 5-di (2-pyridyl)-4H-1, 2, 4-triazoles and related ligands”, Coordination Chemistry Reviews, 241(1-2), 119-132, 2003. https://doi.org/10.1016/S0010-8545(03)00049-3
  • Bentley, R., “Role of sulfur chirality in the chemical processes of biology”, Chemical Society Reviews, 34(7), 609-624, 2005. https://doi.org/10.1039/B418284G
  • Hu, Y., Li, CY., Wang, XM., Yang, YH., & Zhu, HL., “1, 3, 4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry”, Chemical reviews, 114(10), 5572-5610, 2014. https://doi.org/10.1021/cr400131u
  • Abdelli, A., Azzouni, S., Plais, R., Gaucher, A., Efrit, ML., & Prim, D., “Recent advances in the chemistry of 1, 2, 4-triazoles: Synthesis, reactivity and biological activities”, Tetrahedron Letters, 86, 153518, 2021. https://doi.org/10.1016/j.tetlet.2021.153518
  • Zhou, S., Zhang, L., Jin, J., Zhang, A., Lei, X., Lin, J., Zhang, H., “Synthesis and biological activities of some novel triazolothiadiazines and Schiff bases derived from 1, 2, 4-triazole”, Phosphorus, Sulfur, and Silicon and the Related Elements, 182(2), 419-432, 2007. https://doi.org/10.1080/10426500600976884
  • El Sayed, H., Awad, LF., Soliman, SM., Abd Al Moaty, MN., Ghabbour, HA., & Barakat, A., “Tautomerism aspect of thione-thiol combined with spectral investigation of some 4-amino-5-methyl-1, 2, 4-triazole-3-thione Schiff's bases”, Journal of Molecular Structure, 1146, 432-440, 2017. https://doi.org/10.1016/j.molstruc.2017.06.002
  • Patel, VM., Patel, NB., Chan-Bacab, MJ., Rivera, G., “Synthesis, biological evaluation and molecular dynamics studies of 1, 2, 4-triazole clubbed Mannich bases”, Computational biology and chemistry, 76, 264-274, 2018. https://doi.org/10.1016/j.compbiolchem.2018.07.020
  • Gültekin, E., Bekircan, O., Kara, Y., Güler, Hİ., Soylu, MS., Kolaylı, S., “1, 3, 4‐Thiadiazole and 1, 2, 4‐triazole‐5‐thione derivatives bearing 2‐pentyl‐5‐phenyl‐2, 4‐dihydro‐3H‐1, 2, 4‐triazole‐3‐one ring: Synthesis, molecular docking, urease inhibition, and crystal structure”, Archiv der Pharmazie, 356(1), 2200355, 2023. https://doi.org/10.1002/ardp.202200355
  • Jain, AK., Ravichandran, V., Sisodiya, M., & Agrawal, RK., “Synthesis and antibacterial evaluation of 2–substituted–4, 5–diphenyl–N–alkyl imidazole derivatives”, Asian Pacific Journal of Tropical Medicine, 3(6), 471-474, 2010. https://doi.org/10.1016/S1995-7645(10)60113-7
  • Pakravan, P., Kashanian, S., Khodaei, MM., Harding, FJ., “Biochemical and pharmacological characterization of isatin and its derivatives: from structure to activity”, Pharmacological Reports, 65(2), 313-335, 2013.
  • Kahriman, N., Serdaroğlu, V., Peker, K., Aydın, A., Usta, A., Fandaklı, S., Yaylı, N., “Synthesis and biological evaluation of new 2, 4, 6-trisubstituted pyrimidines and their N-alkyl derivatives”, Bioorganic Chemistry, 83, 580-594, 2019. https://doi.org/10.1016/j.bioorg.2018.10.068
  • Creaven, B. S., Czeglédi, E., Devereux, M., Enyedy, EA., Kia, AFA., Karcz, D., Walsh, M., “Biological activity and coordination modes of copper (II) complexes of Schiff base-derived coumarin ligands”, Dalton Transactions, 39(45), 10854-10865, 2010. https://doi.org/10.1039/c0dt00068j
  • Furman, R., Biswas, T., Danhart, E., Foster, MP., Tsodikov, OV., & Artsimovitch, I., “Dksa2, a zinc‐independent structural analog of the transcription factor dksa”, FEBS Letters, 587(6), 614-619, 2013. https://doi.org/10.1016/j.febslet.2013.01.073
  • Zhang, S., Thompson, JP., Xia, J., Bogetti, AT., York, F., Skillman, AG., . LeBard, DN., “Mechanistic insights into passive membrane permeability of drug-like molecules from a weighted ensemble of trajectories”, Journal of Chemical Information and Modeling, 62(8), 1891-1904, 2022. https://doi.org/10.26434/chemrxiv-2021-mmv2k
  • Erdoğan, H., Yılmaz, Ö., Çevik, PK., Doğan, M., Özen, R., “Synthesis of schiff bases and secondary amines with indane skeleton; evaluation of their antioxidant, antibiotic, and antifungal activities”, Chemistry & Biodiversity, 20(9), e202300684, 2023. https://doi.org/10.1002/cbdv.202300684
  • Balouiri, M., Sadiki, M., Ibnsouda, SK., “Methods for in vitro evaluating antimicrobial activity: A review”, Journal of pharmaceutical analysis, 6(2), 71-79, 2016. https://doi.org/10.1016/j.jpha.2015.11.005
  • CLSI (Clinical and Laboratory Standards), 2007, Performance standards for antimicrobial susceptibility testing, 17th Informational Supplement, M100-S17, 27: 1.
  • Oyaizu, M., “Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine”, The Japanese journal of nutrition and dietetics, 44(6), 307-315, 1986.
  • Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M., “Free radical scavenging properties of wheat extracts”, Journal of agricultural and food chemistry, 50(6), 1619-1624, 2002. https://doi.org/10.1021/jf010964p
  • Munguia, J., LaRock, DL., Tsunemoto, H., Olson, J., Cornax, I., Pogliano, J., Nizet, V., “The Mla pathway is critical for Pseudomonas aeruginosa resistance to outer membrane permeabilization and host innate immune clearance”, Journal of molecular medicine, 95(10), 1127-1136, 2017. https://doi.org/10.1007/s00109-017-1579-4
  • Da Silva, CM., da Silva, DL., Modolo, LV., Alves, RB., de Resende, MA., Martins, C. V., de Fátima, Â., “Schiff bases: A short review of their antimicrobial activities”, Journal of Advanced research, 2(1), 1-8, 2011. https://doi.org/10.1016/j.jare.2010.05.004
  • Heimark, L., Shipkova, P., Greene, J., Munayyer, H., Yarosh‐Tomaine, T., DiDomenico, B., Pramanik, BN., “Mechanism of azole antifungal activity as determined by liquid chromatographic/mass spectrometric monitoring of ergosterol biosynthesis”, Journal of mass spectrometry, 37(3), 265-269, 2002. https://doi.org/10.1002/jms.280
  • François, IE., Bink, A., Vandercappellen, J., Ayscough, KR., Toulmay, A., Schneiter, R., Thevissen, K., “Membrane rafts are involved in intracellular miconazole accumulation in yeast cells”, Journal of Biological Chemistry, 284(47), 32680-32685, 2009. https://doi.org/10.1074/jbc.m109.014571
  • Sadeghpour, H., Khabnadideh, S., Zomorodian, K., Pakshir, K., Hoseinpour, K., Javid, N., Rezaei, Z., “Design, synthesis, and biological activity of new triazole and nitro-triazole derivatives as antifungal agents”, Molecules, 22(7), 1150, 2017. https://doi.org/10.3390/molecules22071150
  • Ding, M., Wan, S., Wu, N., Yan, Y., Li, J., & Bao, X., “Synthesis, structural characterization, and antibacterial and antifungal activities of novel 1, 2, 4-triazole thioether and thiazolo [3, 2-b]-1, 2, 4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety”, Journal of Agricultural and Food Chemistry, 69(50), 15084-15096, 2021. https://doi.org/10.1021/acs.jafc.1c02144
  • Shao, WB., Wang, PY., Fang, ZM., Wang, JJ., Guo, DX., Ji, J., Yang, S., “Synthesis and biological evaluation of 1, 2, 4-triazole thioethers as both potential virulence factor inhibitors against plant bacterial diseases and agricultural antiviral agents against tobacco mosaic virus infections”, Journal of Agricultural and Food Chemistry, 69(50), 15108-15122, 2021. https://doi.org/10.1021/acs.jafc.1c05202
  • Mohamed, HA., Ammar, YA., Elhagali, GA., Eyada, HA., Aboul-Magd, DS., & Ragab, A., “In vitro antimicrobial evaluation, single-point resistance study, and radiosterilization of novel pyrazole incorporating thiazol-4-one/thiophene derivatives as dual DNA gyrase and DHFR inhibitors against MDR pathogens”, ACS omega, 7(6), 4970, 2022. https://doi.org/10.1021/acsomega.1c05801
  • Gürsoy Kol, Ö. Alkan, M., Antioxidant Properties of 1,2,4-Triazoles, Chemistry of 1,2,4-Triazoles in Current Science, ISRES Publishing, s. 24-45, 2022.
  • Rana, MS., Rayhan, NMA., Emon, MSH., Islam, MT., Rathry, K., Hasan, MM., Asraf, MA., “Antioxidant activity of Schiff base ligands using the DPPH scavenging assay: an updated review”, RSC advances, 14(45), 33094-33123, 2024. https://doi.org/10.1039/D4RA04375H
  • Borgohain, R., Handique, JG., Guha, AK., Pratihar, S., “A theoretical study of antioxidant activity of some Schiff bases derived from biologically important phenolic aldehydes and phenylenediamines”, Journal of Physical Organic Chemistry, 31(2), e3757, 2018. https://doi.org/10.1002/poc.3757
  • Aytac, S., Gundogdu, O., Bingol, Z., & Gulcin, İ., “Synthesis of Schiff bases containing phenol rings and investigation of their antioxidant capacity, anticholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibition properties”, Pharmaceutics, 15(3), 779, 2023. https://doi.org/10.3390/pharmaceutics15030779
  • Temuz, M. M., Çankaya, N., Korcan, S. E., Yalçin Azarkan, S., & Kahraman, T. (2024). First In Vitro–In Silico Analysis for the Determination of Antimicrobial and Antioxidant Properties of 2-(4-Methoxyphenylamino)-2-oxoethyl Methacrylate and p-Acetamide. ACS omega, 9(7), 7910-7922. https://doi.org/10.1021/acsomega.3c07836
  • Quy Huong, D., Nam, PC., Quang, DT., Ngo, ST., Duong, T., Tam, NM., “Evaluation of free radical scavenging ability of triazole-3-thiol: a combination of experimental and theoretical approaches”, ACS omega, 9(22), 24071-24081, 2024. https://doi.org/10.1021/acsomega.4c02931
There are 52 citations in total.

Details

Primary Language English
Subjects Organic Chemical Synthesis
Journal Section Research Article
Authors

Ergün Gültekin 0000-0001-8007-0567

Project Number 2024.F65.02.03
Submission Date October 16, 2025
Acceptance Date December 16, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

IEEE E. Gültekin, “ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF NOVEL S-ALKYLATED AND REDUCED SCHIFF BASE 1,2,4-TRIAZOLE DERIVATIVES”, MEJS, vol. 11, no. 2, pp. 212–227, 2025, doi: 10.51477/mejs.1804747.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png