Research Article
BibTex RIS Cite
Year 2015, , 15 - 27, 25.12.2015
https://doi.org/10.23884/mejs.2015.1.2.01

Abstract

References

  • [1] Ahn, K.-H., Ryu, G. Y., Youn, S.-W., & Shin, D.-M. (2004). The conjugation effects on the luminescence properties of oligophenylenes for the OLED. Materials Science and Engineering: C, 24(1–2), 163-165. doi:http://dx.doi.org/10.1016/j.msec.2003.09.010
  • [2] Bukhari, S. B., Memon, S., Tahir, M. M., Bhanger, M.I. (2008). Synthesis, characterization and antioxidant activity copper-quercetin complex. Journal of Molecular Structure, 892, 39–46. http://dx.doi.org/10.1016/j.saa.2008.07.030
  • [3] Card, H.C. & Rhoderick, E.H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589-1601. http://dx.doi.org/10.1088/0022-3727/4/10/319
  • [4] Chaieb, A., Vignau, L., Brown, R., Wantz, G., Huby, N., François, J., & Dagron-Lartigau, C. (2008). PL and EL properties of oligo(p-phenylene vinylene) (OPPV) derivatives and their applications in organic light-emitting diodes (OLED). Optical Materials, 31(1), 68-74. doi:http://dx.doi.org/10.1016/j.optmat.2008.01.012
  • [5] Chen, L., Deng, J., Gao, H., Yang, Q., Kong, L., Cui, M., Zhang, Z. (2016). Ellipsometric study and application of rubrene thin film in organic Schottky diode. Applied Surface Science, 388, 396-400. http://dx.doi.org/10.1016/j.apsusc.2015.12.111
  • [6] Evyapan, M., Kadem, B., Basova, T. V., Yushina, I. V., & Hassan, A. K. (2016). Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance. Sensors and Actuators B: Chemical, 236, 605-613. doi:http://dx.doi.org/10.1016/j.snb.2016.05.070
  • [7] Haryanto, Wahyuningrum, D., & Alni, A. (2015). Study on the Nitration Reaction of N,N-diphenylamine Compounds and Its Characterization as Organic Light Emitting Diode (OLED) Material. Procedia Chemistry, 16, 586-591. doi:http://dx.doi.org/10.1016/j.proche.2015.12.096
  • [8] Güllü, Ö., Aydoğan, Ş., Türüt, A. (2012). High barrier Schottky diode with organic interlayer. Solid State Communications, 152 (5), 381-385 (2012). http://dx.doi.org/10.1016/j.ssc.2011.12.007
  • [9] Kösemen, Z. A., Kösemen, A., Öztürk, S., Canimkurbey, B., San, S. E., Yerli, Y., & Tunç, A. V. (2016). Effect of intrinsic polymer properties on the photo sensitive organic field-effect transistors (Photo-OFETs). Microelectronic Engineering, 161, 36-42. doi:http://dx.doi.org/10.1016/j.mee.2016.04.007
  • [10] Lim, C. J., Li, L., Lei, Y., Zhou, F., Wu, B., Liu, X., . . . Ng, S.-C. (2016). Synthesis and characterization of three thienopyridazine-based copolymers and their application in OFET. Tetrahedron Letters, 57(14), 1523-1527. doi:http://dx.doi.org/10.1016/j.tetlet.2016.02.049
  • [11] Nuhoğlu, Ç., & Gülen, Y. (2010). The effect of high temperature annealing on Schottky diode characteristics of Au/n-Si contacts. Vacuum, 84 (6), 812-816. http://dx.doi.org/10.1016/j.vacuum.2009.10.049
  • [12] Norde, H. (1979). A modified forward I‐V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052. http://dx.doi.org/10.1063/1.325607
  • [13] Ozaydin, C., Akkilic, K. (2014). Electrical and photoelectrical properties of copper(II) complex/n-Si/Au heterojunction diode. American Journal of Optics and Photonics, 2(6), 69-74. http://dx.doi.org/10.11648/j.ajop.20140206.11
  • [14] Ozerden, E., Yildiz, M., Ocak, Y. S., Tombak, A., & Kilicoglu, T. (2014). An organic–inorganic rectifying contact based on a ZnPc derivative. Materials Science in Semiconductor Processing, 28(0), 72-76. doi:http://dx.doi.org/10.1016/j.mssp.2014.06.006
  • [15] Remya, R., & Deb, B. (2017). Ultrathin organic spin-on layers on indium tin oxide as a prospective tool for enhanced light throughput. Materials Letters, 186, 220-223. doi:http://dx.doi.org/10.1016/j.matlet.2016.10.008
  • [16] Sağlam, M., Cimilli, F. E., Türüt, A. (20049. Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier diodes. Physica B: Condensed Matter, 348 (1–4), 397-403. http://dx.doi.org/10.1016/j.physb.2004.01.002
  • [17] Shin, D., Lee, J.-Y., Hong, K.-Y., Park, J., & Seo, Y.-S. Slot-die coating of organic thin films for active-matrix organic light-emitting diode displays. Thin Solid Films. doi:http://dx.doi.org/10.1016/j.tsf.2016.11.001
  • [18] Sung, M. J., Kim, Y., Lee, S. B., Lee, G. B., An, T. K., Cha, H., . . . Kim, Y.-H. (2016). New dithienophosphole-based donor–acceptor alternating copolymers: Synthesis and structure property relationships in OFET. Dyes and Pigments, 125, 316-322. doi:http://dx.doi.org/10.1016/j.dyepig.2015.09.026
  • [19] Sze, S. M. & Ng, K. K.. (2007). Physics of Semiconductor Devices. 3rd ed., 111 River St, Hoboken, 07030 New Jersey: John Wiley and Sons, Inc.
  • [20] Tombak, A., Ocak, Y. S., Asubay, S., Kilicoglu, T., & Ozkahraman, F. (2014). Fabrication and electrical properties of an organic–inorganic device based on Coumarin 30 dye. Materials Science in Semiconductor Processing, 24, 187-192. doi:10.1016/j.mssp.2014.03.004

OPTICAL, ELECTRICAL AND PHOTOELECTRICAL PROPERTIES OF QUERCETIN-CO(II) COMPLEX/N-SI ORGANIC-INORGANIC HYBRID DEVICE

Year 2015, , 15 - 27, 25.12.2015
https://doi.org/10.23884/mejs.2015.1.2.01

Abstract


Quercetin is a member of the flavonoid’s class and colorful organic molecule widely distributed in nature. Quercetin is known as 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one with molecular formula C15H10O7. Also, quercetin has conjugated structure with 16 π-rich electrons. In this study, Quercetin cobalt (II) complex (Quercetin-Co(II) Complex) was synthesized. The thin films of synthesized quercetin cobalt (II) complex were formed on glass and semiconductor substrates by sol-gel spin coating technique. The absorption, reflection and transmittance spectra of the thin film were taken in 200-1100 nm wavelength range. The optical band gap of the film was determined from absorption studies and was found to be 2.59 eV for direct transitions and 1.90 eV for indirect transitions. The morphological properties of the thin film formed on the semiconductor substrates was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). We fabricated Au/Quercetin-Co(II) Complex/n-Si organic-inorganic hybrid device to investigate electrical and photoelectrical properties. The current-voltage (I-V) measurement of the device was carried out at room temperature and in dark. The device has a rectification behavior with the ideality factor n of 1.55 and the barrier height ϕb of 0.77 eV. In addition, the short circuit current (Isc) and open circuit voltage (Voc) have been extracted from the I-V measurements under 100 mW/cm2 illumination conditions. Besides, the capacitance-voltage (C-V) characteristics of the device at different frequency and room temperature are discussed.


References

  • [1] Ahn, K.-H., Ryu, G. Y., Youn, S.-W., & Shin, D.-M. (2004). The conjugation effects on the luminescence properties of oligophenylenes for the OLED. Materials Science and Engineering: C, 24(1–2), 163-165. doi:http://dx.doi.org/10.1016/j.msec.2003.09.010
  • [2] Bukhari, S. B., Memon, S., Tahir, M. M., Bhanger, M.I. (2008). Synthesis, characterization and antioxidant activity copper-quercetin complex. Journal of Molecular Structure, 892, 39–46. http://dx.doi.org/10.1016/j.saa.2008.07.030
  • [3] Card, H.C. & Rhoderick, E.H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589-1601. http://dx.doi.org/10.1088/0022-3727/4/10/319
  • [4] Chaieb, A., Vignau, L., Brown, R., Wantz, G., Huby, N., François, J., & Dagron-Lartigau, C. (2008). PL and EL properties of oligo(p-phenylene vinylene) (OPPV) derivatives and their applications in organic light-emitting diodes (OLED). Optical Materials, 31(1), 68-74. doi:http://dx.doi.org/10.1016/j.optmat.2008.01.012
  • [5] Chen, L., Deng, J., Gao, H., Yang, Q., Kong, L., Cui, M., Zhang, Z. (2016). Ellipsometric study and application of rubrene thin film in organic Schottky diode. Applied Surface Science, 388, 396-400. http://dx.doi.org/10.1016/j.apsusc.2015.12.111
  • [6] Evyapan, M., Kadem, B., Basova, T. V., Yushina, I. V., & Hassan, A. K. (2016). Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance. Sensors and Actuators B: Chemical, 236, 605-613. doi:http://dx.doi.org/10.1016/j.snb.2016.05.070
  • [7] Haryanto, Wahyuningrum, D., & Alni, A. (2015). Study on the Nitration Reaction of N,N-diphenylamine Compounds and Its Characterization as Organic Light Emitting Diode (OLED) Material. Procedia Chemistry, 16, 586-591. doi:http://dx.doi.org/10.1016/j.proche.2015.12.096
  • [8] Güllü, Ö., Aydoğan, Ş., Türüt, A. (2012). High barrier Schottky diode with organic interlayer. Solid State Communications, 152 (5), 381-385 (2012). http://dx.doi.org/10.1016/j.ssc.2011.12.007
  • [9] Kösemen, Z. A., Kösemen, A., Öztürk, S., Canimkurbey, B., San, S. E., Yerli, Y., & Tunç, A. V. (2016). Effect of intrinsic polymer properties on the photo sensitive organic field-effect transistors (Photo-OFETs). Microelectronic Engineering, 161, 36-42. doi:http://dx.doi.org/10.1016/j.mee.2016.04.007
  • [10] Lim, C. J., Li, L., Lei, Y., Zhou, F., Wu, B., Liu, X., . . . Ng, S.-C. (2016). Synthesis and characterization of three thienopyridazine-based copolymers and their application in OFET. Tetrahedron Letters, 57(14), 1523-1527. doi:http://dx.doi.org/10.1016/j.tetlet.2016.02.049
  • [11] Nuhoğlu, Ç., & Gülen, Y. (2010). The effect of high temperature annealing on Schottky diode characteristics of Au/n-Si contacts. Vacuum, 84 (6), 812-816. http://dx.doi.org/10.1016/j.vacuum.2009.10.049
  • [12] Norde, H. (1979). A modified forward I‐V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052. http://dx.doi.org/10.1063/1.325607
  • [13] Ozaydin, C., Akkilic, K. (2014). Electrical and photoelectrical properties of copper(II) complex/n-Si/Au heterojunction diode. American Journal of Optics and Photonics, 2(6), 69-74. http://dx.doi.org/10.11648/j.ajop.20140206.11
  • [14] Ozerden, E., Yildiz, M., Ocak, Y. S., Tombak, A., & Kilicoglu, T. (2014). An organic–inorganic rectifying contact based on a ZnPc derivative. Materials Science in Semiconductor Processing, 28(0), 72-76. doi:http://dx.doi.org/10.1016/j.mssp.2014.06.006
  • [15] Remya, R., & Deb, B. (2017). Ultrathin organic spin-on layers on indium tin oxide as a prospective tool for enhanced light throughput. Materials Letters, 186, 220-223. doi:http://dx.doi.org/10.1016/j.matlet.2016.10.008
  • [16] Sağlam, M., Cimilli, F. E., Türüt, A. (20049. Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier diodes. Physica B: Condensed Matter, 348 (1–4), 397-403. http://dx.doi.org/10.1016/j.physb.2004.01.002
  • [17] Shin, D., Lee, J.-Y., Hong, K.-Y., Park, J., & Seo, Y.-S. Slot-die coating of organic thin films for active-matrix organic light-emitting diode displays. Thin Solid Films. doi:http://dx.doi.org/10.1016/j.tsf.2016.11.001
  • [18] Sung, M. J., Kim, Y., Lee, S. B., Lee, G. B., An, T. K., Cha, H., . . . Kim, Y.-H. (2016). New dithienophosphole-based donor–acceptor alternating copolymers: Synthesis and structure property relationships in OFET. Dyes and Pigments, 125, 316-322. doi:http://dx.doi.org/10.1016/j.dyepig.2015.09.026
  • [19] Sze, S. M. & Ng, K. K.. (2007). Physics of Semiconductor Devices. 3rd ed., 111 River St, Hoboken, 07030 New Jersey: John Wiley and Sons, Inc.
  • [20] Tombak, A., Ocak, Y. S., Asubay, S., Kilicoglu, T., & Ozkahraman, F. (2014). Fabrication and electrical properties of an organic–inorganic device based on Coumarin 30 dye. Materials Science in Semiconductor Processing, 24, 187-192. doi:10.1016/j.mssp.2014.03.004
There are 20 citations in total.

Details

Subjects Metrology, Applied and Industrial Physics
Journal Section Article
Authors

Cihat Özaydın

Ahmet Tombak This is me

Mehmet Boğa This is me

Tahsin Kılıçoğlu

Publication Date December 25, 2015
Submission Date September 8, 2015
Published in Issue Year 2015

Cite

IEEE C. Özaydın, A. Tombak, M. Boğa, and T. Kılıçoğlu, “OPTICAL, ELECTRICAL AND PHOTOELECTRICAL PROPERTIES OF QUERCETIN-CO(II) COMPLEX/N-SI ORGANIC-INORGANIC HYBRID DEVICE”, MEJS, vol. 1, no. 2, pp. 15–27, 2015, doi: 10.23884/mejs.2015.1.2.01.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png