Review
BibTex RIS Cite

PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis mellifera L.)

Year 2020, Volume: 20 Issue: 2, 32 - 52, 31.12.2020

Abstract

Honey bees represent an important cultural and economic benefit for humans by pollinating wildflowers and crops. Honey bees, like other organisms, face a wide range of environmental stressors throughout their lives. These stress factors disrupt the physiological balance of the organism. During the use and metabolism of oxygen taken into the organism, aggressive molecules known as free radicals are formed and the organism cannot keep these radicals under control and oxidative stress occurs. In such a situation, free radicals attack, oxidize, and degrade healthy cells. This degradation is characterized by the increased production of reactive oxygen species (ROS) by the simultaneous degradation of waste systems. Exceeding the oxidative stress threshold in honey bees causes bee losses on an individual or colony level. Colony losses, which have been increasing day by day due to environmental factors, reveal the importance of studies on the formation, physiology, and prevention of oxidative stress. The most important antioxidant enzymes identified in honey bees are glutathione S-transferase (GST), glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD). This review examines the mechanism of oxidative stress and the effects of pesticides and pathogens on oxidative stress in honey bees.

References

  • [1] KLEIN, A M; VAISSIERE, B E; CANE, J H; STEFFAN‐DEWENTER, I; CUNNINGHAM, S A; KREMEN, C; TSCHARNTKE, T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B‐Biological Sciences, 274(1608): 303-313.
  • [2] OLLERTON, J; WINFREE, R; TARRANT, S (2011) How many flowering plants are pollinated by animals?. Oikos, 120(3): 321-326.
  • [3] KLEIJN, D; WİNFREE, R; BARTOMEUS, I; CARVALHEIRO, L G; HENRY, M; ISAACS, R; ... ; RICKETTS, T H (2015). Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature communications, 6(1): 1-9.
  • [4] ROFFET-SALQUE, M; REGERT, M; EVERSHED, R P; OUTRAM, A K; CRAMP, L J; DECAVALLAS, O; ... ; PÄÄKKÖNEN, M (2015) Widespread exploitation of the honeybee by early Neolithic farmers. Nature, 527(7577): 226-230.
  • [5] NAUG, D (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142 (10): 2369-2372.
  • [6] GUMUSOVA, O; ALBAYRAK, H; KURT, M; YAZICI, Z (2010) Prevalence of three honey bee viruses in Turkey. Veterinarski Arhiv, 80(6): 779-785.
  • [7] VANENGELSDORP, D; MEIXNER, M D (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: 80-95.
  • [8] GOULSON, D; NICHOLLS, E; BOTÍAS, C; ROTHERAY, E L (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229).
  • [9] DOLEZAL, A G; TOTH, A L (2018) Feedbacks between nutrition and disease in honey bee health. Current Opinion in Insect Science, 26: 114-119.
  • [10] SA´NCHEZ-BAYO, F; WYCKHUYS, K A G (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232: 8–27.
  • [11] MORAWETZ, L; KÖGLBERGER, H; GRIESBACHER, A; DERAKHSHIFAR, I; CRAILSHEIM, K; BRODSCHNEİDER, R; MOOSBECKHOFER, R (2019) Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PloS one, 14(7), e0219293.
  • [12] WAGNER, D L (2020) Insect declines in the Anthropocene. Annual Review of Entomology 65: 457–480.
  • [13] PATEL, V; PAULI, N; BIGGS, E; BARBOUR, L; BORUFF, B (2020) Why bees are critical for achieving sustainable development. Ambio, 1-11.
  • [14] KODRIK, D; BEDNÁŘOVÁ, A; ZEMANOVÁ, M; KRISHNAN, N (2015) Hormonal regulation of response to oxidative stress in insects—an update. International journal of molecular sciences, 16(10): 25788-25816.
  • [15] SIES H (1985) Oxidative stress: introductory remarks. In: Sies H, ed. Oxidative Stress. London: Academic Press:1e8.
  • [16] SABUNCUOĞLU, S; ÖZGÜNEŞ, H (2011) Kemoterapi, serbest radikaller ve oksidatif stres. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, (2): 137-150.
  • [17] GAGNÉ, F (2014) Oxidative stress. Biochemical Ecotoxicology. Principles and Methods. Chapter 6: 103-115.
  • [18] CUI, H; KONG, Y; ZHANG, H (2012) Oxidative stress, mitochondrial dysfunction, and aging. Journal of signal transduction.
  • [19] KROKAN, H E; STANDAL, R; SLUPPHAUG, G (1997) DNA glycosylases in the base excision repair of DNA. Biochemical Journal, 325(1): 1-16.
  • [20] SIES, H (1993) “Strategies of antioxidant defense,” European Journal of Biochemistry, vol. 215, pp. 213–219. 
  • [21] DASGUPTA, A; KLEIN, K (2014) Oxidative Stress Related to Other Diseases. Antioxidants in Food, Vitamins and Supplements, 185-207.
  • [22] BUS, J S (2017) "The dose makes the poison": key implications for mode of action (mechanistic) research in a 21st century toxicology paradigm. Curr Opin Toxicol, 3:87e91.
  • [23] SIES, H (2019) Oxidative Stress: Eustress and Distress in Redox Homeostasis. In Stress: Physiology, biochemistry, and pathology, Academic Press, (pp. 153-163).
  • [24] SIES, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidativestress: Oxidative eustress. Redox biology, 11: 613-619.
  • [25] FORMAN, H J; MAIORINO, M; URSINI, F (2010) Signaling functions of reactive oxygen species. Biochemistry, 49(5): 835-842.
  • [26] MARINHO, H S; REAL, C; CYRNE, L; SOARES, H; ANTUNES, F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox biology, 2, 535-562.
  • [27] YAN, H; MENG, F; JIA, H; GUO, X; XU, B (2012) The identification and oxidative stress response of a zeta class glutathione S-transferase (GSTZ1) gene from Apis cerana cerana. Journal of insect physiology, 58(6): 782-791.
  • [28] FARJAN, M; DMITRYJUK, M; LIPIŃSKI, Z; BIERNAT-ŁOPIEŃSKA, E; ŻÓŁTOWSKA, K (2012) Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system of Apis mellifera carnica brood at different stages. Journal of Apicultural Research, 51(3): 263-270.
  • [29] RAMESHTHANGAM, P; RAMASAMY, P (2006) Antioxidant and membrane bound enzymes activity in WSSV-infected Penaeus monodon Fabricius. Aquaculture, 254(1-4): 32-39.
  • [30] DUBOVSKIY, I M; MARTEMYANOV, V V; VORONTSOVA, Y L; RANTALA, M J; GRYZANOVA, E V; GLUPOV, V V (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148(1): 1-5.
  • [31] CHAKRABARTI, P; RANA, S; SARKAR, S; SMITH, B; BASU, P (2015) Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie, 46(1): 107-129.
  • [32] STRACHECKA, A J; OLSZEWSKI, K; PALEOLOG, J (2015) Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. Journal of Apicultural Science, 59(1): 129-141.
  • [33] BALIEIRA, K V B; MAZZO, M; BIZERRA, P F V; GUIMARÃES, A R D J S; NICODEMO, D; MINGATTO, F E (2018) Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie, 49(5): 562-572.
  • [34] SHOU-MIN, F A N G (2012) Insect glutathione S-transferase: a review of comparative genomic studies and response to xenobiotics. Bull Insectol, 65: 265-271.
  • [35] CORONA, M; VELARDE, R A; REMOLINA, S; MORAN-LAUTER, A; WANG, Y; HUGHES, K A; ROBINSON, G E (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proceedings of the National Academy of Sciences, 104(17): 7128-7133.
  • [36] SEEHUUS, S C; NORBERG K; GIMSA U; KREKLING T; AMDAM G V (2006) Reproductive protein protects sterile honey bee workers from oxidative stress. Proc Natl Acad Sci USA. 103: 962 967.10.1073/pnas.0502681103.
  • [37] ARONSTEİN, K A; MURRAY, K D; SALDİVAR, E (2010) Transcriptional responses in honey bee larvae infected with chalkbrood fungus. BMC genomics, 11(1): 391.
  • [38] AMDAM, G V; OMHOLT S W (2002) The regulatory anatomy of honeybee lifespan. J Theor Biol. 216:209- 228.
  • [39] AMDAM, G; IHLE, K E; PAGE, R (2010) Regulation of honeybee worker (Apis mellifera) life histories by vitellogenin. In Hormones, Brain and Behavior Online. Elsevier Inc., (pp. 1003-1027).
  • [40] CORONA, M; HUGHES, K A; WEAVER, D B; ROBINSON, G E (2005) Gene expression patterns associated with queen honey bee longevity. Mechanisms of ageing and development, 126(11): 1230-1238.
  • [41] PIULACHS, M D; GUIDUGLI, K R; BARCHUK, A R; CRUZ, J; SIMOES, Z L P; BELLES, X (2003) The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect biochemistry and molecular biology, 33(4): 459-465.
  • [42] LI-BYARLAY, H; HUANG, M H; SIMONE-FINSTROM, M; STRAND, M K; TARPY, D R; RUEPPELL, O (2016) Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Experimental gerontology, 83: 15-21.
  • [43] NELSON, C M; IHLE, K E; FONDRK, M; PAGE JR R E; AMDAM, G V (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol, 5(3), e62.
  • [44] ORUÇ, H H (2019) ‘Pestisitlerin Bal Arıları Üzerine Etkisi ve Korunma’, Zehirsiz Sofralar Konferansı, İstanbul Kadir Has Üniversitesi, 23 Kasım 2019, İstanbul. http://zehirsizsofralar.org/wp-content/uploads/2020/01/Prof.-Dr.-Hasan-H%C3%BCseyin-Oru%C3%A7.pdf
  • [45] WILLIAMSON, S M; WILLIS, S J; WRIGHT, G A (2014) Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology, 23(8): 1409-1418.
  • [46] MACKENZIE, K E; WINSTON, M (1989) Effects of sublethal exposure to diazinon on longevity and temporal division of labor in the honey bee (Hymenoptera: Apidae). Journal of economic entomology, 82(1): 75-82.
  • [47] HENRY, M; BEGUIN, M; REQUIER, F; ROLLIN, O; ODOUX, J F; AUPINEL, P; ... DECOURTYE, A (2012) A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079): 348-350.
  • [48] ALBURAKI, M; STECKEL, S J; CHEN, D; MCDERMOTT, E; WEISS, M; SKINNER, J A; ... & ADAMCZYK, J (2017) Landscape and pesticide effects on honey bees: forager survival and expression of acetylcholinesterase and brain oxidative genes. Apidologie, 48(4): 556-571.
  • [49] JOHNSON, R M (2015) Honey bee toxicology. Annual review of entomology, 60.
  • [50] REHMAN, S; WALIULLAH, M I S (2012) Chlorpyrifos-induced neuro-oxidative damage in bee. Toxicology and Environmental Health Sciences, 4(1): 30-36.
  • [51] BLACQUIERE, T; SMAGGHE, G; VAN GESTEL, C A; MOMMAERTS, V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology, 21(4): 973-992.
  • [52] SŁOWIŃSKA, M; NYNCA, J; WILDE, J; BĄK, B; SIUDA, M; CIERESZKO, A (2016) Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide, and comparison to antioxidant capacity of seminal plasma. Apidologie, 47(2): 227-236.
  • [53] NICODEMO, D; MAIOLI, M A; MEDEIROS, H C; GUELFI, M; BALIEIRA, K V; DE JONG, D; MINGATTO, F E (2014) Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environmental toxicology and chemistry, 33(9): 2070-2075.
  • [54] NICODEMO, D; DE JONG, D; REIS, L G; ALMEIDA, J M V D; SANTOS, A A D; LISBOA, L A M (2018) Transgenic corn decreased total and key storage and lipid transport protein levels in honey bee hemolymph while seed treatment with imidacloprid reduced lipophorin levels. Journal of Apicultural Research, 57(2): 321-328.
  • [55] STRACHECKA, A; KRAUZE, M; OLSZEWSKI, K; BORSUK, G; PALEOLOG, J; MERSKA, M;… GRZYWNOWICZ, K (2014) Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Moscow), 79(11): 1192-1201.
  • [56] CARVALHO, S M; BELZUNCES, L P; CARVALHO, G A; BRUNET, J; BADIOU‐BENETEAU, A (2013) Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the honeybee Apis mellifera to insecticides. Environmental toxicology and chemistry, 32(9): 2117-2124.
  • [57] CASIDA, J E; DURKIN, K A (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58:99–117.
  • [58] HARDSTONE, M C; SCOTT, J G (2010) Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag. Sci. 66(11):1171–80.
  • [59] JOHNSON, R M; DAHLGREN, L; SIEGFRIED, B D; ELLIS, M D (2013) Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLOS ONE, 8(1):e54092.
  • [60] BARNETT, E A; CHARLTON, A J; FLETCHER, M R (2007) Incidents of bee poisoning with pesticides in the United Kingdom, 1994–2003. Pest Manag. Sci. 63(11):1051–57.
  • [61] JOHNSON, R M; ELLIS, M D; MULLIN, C A; FRAZIER, M (2010) Pesticides and honeybee toxicity—USA. Apidologie, 41(3):312–31.
  • [62] CHAUZAT, M P; FAUCON, J P (2007) Pesticide residues in bees wax samples collected from honey bee colonies (Apis mellifera L.) in France. Pest Manag. Sci. 63(11):1100–6.
  • [63] MULLIN, C A; FRAZIER, M; FRAZIER, J L; ASHCRAFT S; SIMONDS R; et al. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLOS ONE 5(3):e9754.
  • [64] HAARMANN T; SPIVAK M; WEAVER, D; WEAVER, B; GLENN, T (2002) Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. J. Econ. Entomol. 95(1):28–35.
  • [65] BERRY, J A; HOOD, W M; PIETRAVALLE, S; DELAPLANE, K S (2013) Field-level sublethal effects of approved bee hive chemicals on honey bees (Apis mellifera L). PLOS ONE, 8(10):e76536.
  • [66] ZHU, W; SCHMEHL, D R; MULLIN, C A; FRAZIER, J L (2014) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLOS ONE, 9(1):e77547.
  • [67] WILLIAMS, J R (2016). Biomarkers of oxidative stress in atrazine-treated honey bees: A laboratory and in-hive study (Doctoral dissertation, Virginia Polytechnic Institute and State University).
  • [68] BADIOU-BÉNÉTEAU, A; CARVALHO, S M; BRUNET, J L; CARVALHO, G A; BULETE, A; GIROUD, B; BELZUNCES, L P (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Ecotoxicology and environmental safety, 82: 22-31.
  • [69] SIMONE-FINSTROM, M; LI-BYARLAY, H; HUANG, M H; STRAND, M K; RUEPPELL, O; TARPY, D R (2016) Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scientific Reports, 6: 32023.
  • [70] ABDELKADER, F B; KAIRO, G; BONNET, M; BARBOUCHE, N; BELZUNCES, L. P; BRUNET, J L (2019) Effects of clothianidin on antioxidant enzyme activities and malondialdehyde level in honey bee drone semen. Journal of Apicultural Research, 58(5): 740-745.
  • [71] CHMIEL, J A; DAISLEY, B A; PITEK, A P; THOMPSON, G J; REID, G (2020) Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Frontiers in Ecology and Evolution, 8: 22.
  • [72] CHAKRABARTI, P; CARLSON, E A; LUCAS, H M; MELATHOPOULOS, A P; SAGILI, R R (2020) Field rates of Sivanto™(flupyradifurone) and Transform®(sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). Plos one, 15(5): e0233033.
  • [73] DUSSAUBAT, C; BRUNET, J L; HIGES, M; COLBOURNE, J K; LOPEZ, J; CHOI, J H; ...BONNET, M (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PloS one, 7(5): e37017.
  • [74] DUSSAUBAT, C; MAISONNASSE, A; CRAUSER, D; TCHAMITCHIAN, S; BONNET, M; COUSIN, M; ... LE CONTE, Y (2016) Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival. Scientific reports, 6(1): 1-7.
  • [75] TARIC, E; GLAVINIC, U; VEJNOVIC, B; STANOJKOVIC, A; ALEKSIC, N; DIMITRIJEVIC, V; STANIMIROVIC, Z (2020) Oxidative Stress, Endoparasite Prevalence and Social Immunity in Bee Colonies Kept Traditionally vs. Those Kept for Commercial Purposes. Insects, 11(5): 266.
  • [76] ANTÚNEZ, K; MARTÍN‐HERNÁNDEZ, R; PRIETO, L; MEANA, A; ZUNINO, P; HIGES, M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental microbiology, 11(9): 2284-2290.
  • [77] ALAUX, C; FOLSCHWEILLER, M; MCDONNELL, C; BESLAY, D; COUSIN, M; DUSSAUBAT, C;… LE CONTE, Y (2011) Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). Journal of invertebrate pathology, 106(3): 380-385.
  • [78] VIDAU, C; DIOGON, M; AUFAUVRE, J; FONTBONNE, R; VIGUÈS, B; BRUNET, J L; TEXIER, C; BIRON, D G; BLOT, N; ALAOUI, H E; et al. (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE, 6: e21550.
  • [79] HOLLOWAY, B; SYLVESTER, H A; BOURGEOIS, L; RINDERER, T E (2012) Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera. J. Apic. Res, 51: 154–163.
  • [80] SUN, J; TOWER, J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell Biol, 19: 216–228.
  • [81] LI, Z; HOU, M; QIU, Y; ZHAO, B; NIE, H; SU, S (2020) Changes in Antioxidant Enzymes Activity and Metabolomic Profiles in the Guts of Honey Bee (Apis mellifera) Larvae Infected with Ascosphaera apis. Insects, 11(7): 419.
  • [82] LIPIŃSKI, Z; ŻÓŁTOWSKA K (2005) Preliminary evidence associating oxidative stress in honey bee drone brood with Varroa destructor. Journal of apicultural research, 44(3): 126-128.
  • [83] BADOTRA, P; KUMAR, N R; HARJAI, K (2013) Varroa causes oxidative stress in Apis mellifera L. Journal of Global Biosciences, 2(6): 199-201.
  • [84] GÜLMEZ, Y; KİSA, D; CAN, I (2016) Effects of Varroa destructor Anderson & Trueman Infestation on Antioxidant Enzymes of Adult Worker Honey Bee (Apis mellifera L.). Asian Journal of Chemistry, 28(3): 663.
  • [85] ŁOPIEŃSKA-BIERNAT, E; SOKÓŁ, R; MICHALCZYK, M; ŻÓŁTOWSKA, K; STRYIŃSKI, R (2017) Biochemical status of feral honey bees (Apis mellifera) infested with various pathogens. Journal of Apicultural Research, 56(5): 606-615.
  • [86] LADAS, A (1972) Der einfluss verschiedener konstitutions- und umweltfaktoren auf die anfã"lligkeit der honigbiene (Apis mellifica L.) gegenãœber zwei insektiziden pflanzenschutzmitteln. Apidologie 3: 55–78.
  • [87] ALAUX, C; BRUNET, J L; DUSSAUBAT, C; MONDET, F; TCHAMITCHAN, S; et al. (2009) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12: 774–782.
  • [88] PARIS, L; ROUSSEL, M; PEREIRA, B; DELBAC, F; DIOGON, M (2017) Disruption of oxidative balance in the gut of the western honeybee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microbial biotechnology, 10(6): 1702-1717.
  • [89] ROUIBI, A; BOUCHEMA, W F; LOUCIF-AYAD, W; ACHOU, M; SOLTANI, N (2016) Risks assessment of two acaricides (fluvalinate and oxalic acid) in Apis mellifera intermissa (Hymenoptera, Apidae): acetylcholinesterase and glutathione S-transferase activities. J Entomol Zool Stud, 4(2): 503-508.
  • [90] NIELSON, A S; BRODSGAARD, C J; HANSEN H (2000) Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). ATLA, 28:437-443. 

  • [91] LOUCIF-AYAD, W; ARIBI, N; SOLTANI, N (2008) Evaluation of Secondary Effects of some Acaricides on Apis Mellifera Intermissa (Hymenoptera, Apidae): Acetylcholinesterase and Glutathione S-Transferase Activities. European Journal of Scientific Research, 21:642-649. 

  • [92] ZIKIC, B; ALEKSIC, N; RISTANIC, M; GLAVINIC, U; VEJNOVIC, B; KRNJAIC, I; STANIMIROVIC, Z (2020) Anti-Varroa Efficiency of Coumaphos and Its Influence on Oxidative Stress and Survival of Honey Bees. Acta Veterinaria, 70(3): 355-373.
  • [93] GREGORC, A; ALBURAKI, M; RINDERER, N; SAMPSON, B; KNIGHT, P R; KARIM, S; ADAMCZYK, J (2018) Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific reports, 8(1): 1-13.
  • [94] ZHANG, G; ZHANG, W; CUI, X; XU, B (2015) Zinc nutrition increases the antioxidant defenses of honey bees. Entomologia Experimentalis et Applicata, 156(3): 201-210.
Year 2020, Volume: 20 Issue: 2, 32 - 52, 31.12.2020

Abstract

Bal arıları, yabani çiçek ve mahsullerin tozlaşmasını sağlayarak insanlar için önemli bir kültürel ve ekonomik fayda sağlar. Bal arıları, diğer organizmalar gibi, yaşamları boyunca çok çeşitli çevresel stres faktörleri ile karşı karşıya kalmaktadır. Bu stres faktörleri organizmanın fizyolojik dengesini bozar. Organizmaya alınan oksijenin kullanımı ve metabolizması sırasında serbest radikaller olarak bilinen agresif moleküller oluşur ve organizma bu radikalleri kontrol altında tutamaz ve oksidatif stres oluşur. Böyle bir durumda, serbest radikaller sağlıklı hücrelere saldırır, okside eder ve bozarlar. Bu bozulma, reaktif oksijen türlerinin (ROS), atık sistemlerinin aynı anda bozulması ile arttırılmış üretimi ile karakterize edilir. Bal arılarında oksidatif stres eşiğinin aşılması, bireysel ya da koloni bazında arı kayıplarına neden olmaktadır. Her geçen gün çevresel faktörlere bağlı olarak, artarak oluşan koloni kayıpları oksidatif stresin oluşumu, fizyoloisi ve önlenmesi üzerine yapılan çalışmaların önemini gözler önüne sermektedir. Bal arılarında tanımlanan en önemli antioksidan enzimler glutatyon S-transferaz (GST), glutatyon peroksidaz (GPX), katalaz (CAT), ve süperoksit dismutaz (SOD)’dır. Bu derleme oksidatif stresin bal arılarındaki mekanizmasını ve pestisit ve patojenlerin bal arılarında oksidatif stres üzerindeki etkilerini incelemektedir.

References

  • [1] KLEIN, A M; VAISSIERE, B E; CANE, J H; STEFFAN‐DEWENTER, I; CUNNINGHAM, S A; KREMEN, C; TSCHARNTKE, T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B‐Biological Sciences, 274(1608): 303-313.
  • [2] OLLERTON, J; WINFREE, R; TARRANT, S (2011) How many flowering plants are pollinated by animals?. Oikos, 120(3): 321-326.
  • [3] KLEIJN, D; WİNFREE, R; BARTOMEUS, I; CARVALHEIRO, L G; HENRY, M; ISAACS, R; ... ; RICKETTS, T H (2015). Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature communications, 6(1): 1-9.
  • [4] ROFFET-SALQUE, M; REGERT, M; EVERSHED, R P; OUTRAM, A K; CRAMP, L J; DECAVALLAS, O; ... ; PÄÄKKÖNEN, M (2015) Widespread exploitation of the honeybee by early Neolithic farmers. Nature, 527(7577): 226-230.
  • [5] NAUG, D (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142 (10): 2369-2372.
  • [6] GUMUSOVA, O; ALBAYRAK, H; KURT, M; YAZICI, Z (2010) Prevalence of three honey bee viruses in Turkey. Veterinarski Arhiv, 80(6): 779-785.
  • [7] VANENGELSDORP, D; MEIXNER, M D (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: 80-95.
  • [8] GOULSON, D; NICHOLLS, E; BOTÍAS, C; ROTHERAY, E L (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229).
  • [9] DOLEZAL, A G; TOTH, A L (2018) Feedbacks between nutrition and disease in honey bee health. Current Opinion in Insect Science, 26: 114-119.
  • [10] SA´NCHEZ-BAYO, F; WYCKHUYS, K A G (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232: 8–27.
  • [11] MORAWETZ, L; KÖGLBERGER, H; GRIESBACHER, A; DERAKHSHIFAR, I; CRAILSHEIM, K; BRODSCHNEİDER, R; MOOSBECKHOFER, R (2019) Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PloS one, 14(7), e0219293.
  • [12] WAGNER, D L (2020) Insect declines in the Anthropocene. Annual Review of Entomology 65: 457–480.
  • [13] PATEL, V; PAULI, N; BIGGS, E; BARBOUR, L; BORUFF, B (2020) Why bees are critical for achieving sustainable development. Ambio, 1-11.
  • [14] KODRIK, D; BEDNÁŘOVÁ, A; ZEMANOVÁ, M; KRISHNAN, N (2015) Hormonal regulation of response to oxidative stress in insects—an update. International journal of molecular sciences, 16(10): 25788-25816.
  • [15] SIES H (1985) Oxidative stress: introductory remarks. In: Sies H, ed. Oxidative Stress. London: Academic Press:1e8.
  • [16] SABUNCUOĞLU, S; ÖZGÜNEŞ, H (2011) Kemoterapi, serbest radikaller ve oksidatif stres. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, (2): 137-150.
  • [17] GAGNÉ, F (2014) Oxidative stress. Biochemical Ecotoxicology. Principles and Methods. Chapter 6: 103-115.
  • [18] CUI, H; KONG, Y; ZHANG, H (2012) Oxidative stress, mitochondrial dysfunction, and aging. Journal of signal transduction.
  • [19] KROKAN, H E; STANDAL, R; SLUPPHAUG, G (1997) DNA glycosylases in the base excision repair of DNA. Biochemical Journal, 325(1): 1-16.
  • [20] SIES, H (1993) “Strategies of antioxidant defense,” European Journal of Biochemistry, vol. 215, pp. 213–219. 
  • [21] DASGUPTA, A; KLEIN, K (2014) Oxidative Stress Related to Other Diseases. Antioxidants in Food, Vitamins and Supplements, 185-207.
  • [22] BUS, J S (2017) "The dose makes the poison": key implications for mode of action (mechanistic) research in a 21st century toxicology paradigm. Curr Opin Toxicol, 3:87e91.
  • [23] SIES, H (2019) Oxidative Stress: Eustress and Distress in Redox Homeostasis. In Stress: Physiology, biochemistry, and pathology, Academic Press, (pp. 153-163).
  • [24] SIES, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidativestress: Oxidative eustress. Redox biology, 11: 613-619.
  • [25] FORMAN, H J; MAIORINO, M; URSINI, F (2010) Signaling functions of reactive oxygen species. Biochemistry, 49(5): 835-842.
  • [26] MARINHO, H S; REAL, C; CYRNE, L; SOARES, H; ANTUNES, F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox biology, 2, 535-562.
  • [27] YAN, H; MENG, F; JIA, H; GUO, X; XU, B (2012) The identification and oxidative stress response of a zeta class glutathione S-transferase (GSTZ1) gene from Apis cerana cerana. Journal of insect physiology, 58(6): 782-791.
  • [28] FARJAN, M; DMITRYJUK, M; LIPIŃSKI, Z; BIERNAT-ŁOPIEŃSKA, E; ŻÓŁTOWSKA, K (2012) Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system of Apis mellifera carnica brood at different stages. Journal of Apicultural Research, 51(3): 263-270.
  • [29] RAMESHTHANGAM, P; RAMASAMY, P (2006) Antioxidant and membrane bound enzymes activity in WSSV-infected Penaeus monodon Fabricius. Aquaculture, 254(1-4): 32-39.
  • [30] DUBOVSKIY, I M; MARTEMYANOV, V V; VORONTSOVA, Y L; RANTALA, M J; GRYZANOVA, E V; GLUPOV, V V (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148(1): 1-5.
  • [31] CHAKRABARTI, P; RANA, S; SARKAR, S; SMITH, B; BASU, P (2015) Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie, 46(1): 107-129.
  • [32] STRACHECKA, A J; OLSZEWSKI, K; PALEOLOG, J (2015) Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. Journal of Apicultural Science, 59(1): 129-141.
  • [33] BALIEIRA, K V B; MAZZO, M; BIZERRA, P F V; GUIMARÃES, A R D J S; NICODEMO, D; MINGATTO, F E (2018) Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie, 49(5): 562-572.
  • [34] SHOU-MIN, F A N G (2012) Insect glutathione S-transferase: a review of comparative genomic studies and response to xenobiotics. Bull Insectol, 65: 265-271.
  • [35] CORONA, M; VELARDE, R A; REMOLINA, S; MORAN-LAUTER, A; WANG, Y; HUGHES, K A; ROBINSON, G E (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proceedings of the National Academy of Sciences, 104(17): 7128-7133.
  • [36] SEEHUUS, S C; NORBERG K; GIMSA U; KREKLING T; AMDAM G V (2006) Reproductive protein protects sterile honey bee workers from oxidative stress. Proc Natl Acad Sci USA. 103: 962 967.10.1073/pnas.0502681103.
  • [37] ARONSTEİN, K A; MURRAY, K D; SALDİVAR, E (2010) Transcriptional responses in honey bee larvae infected with chalkbrood fungus. BMC genomics, 11(1): 391.
  • [38] AMDAM, G V; OMHOLT S W (2002) The regulatory anatomy of honeybee lifespan. J Theor Biol. 216:209- 228.
  • [39] AMDAM, G; IHLE, K E; PAGE, R (2010) Regulation of honeybee worker (Apis mellifera) life histories by vitellogenin. In Hormones, Brain and Behavior Online. Elsevier Inc., (pp. 1003-1027).
  • [40] CORONA, M; HUGHES, K A; WEAVER, D B; ROBINSON, G E (2005) Gene expression patterns associated with queen honey bee longevity. Mechanisms of ageing and development, 126(11): 1230-1238.
  • [41] PIULACHS, M D; GUIDUGLI, K R; BARCHUK, A R; CRUZ, J; SIMOES, Z L P; BELLES, X (2003) The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect biochemistry and molecular biology, 33(4): 459-465.
  • [42] LI-BYARLAY, H; HUANG, M H; SIMONE-FINSTROM, M; STRAND, M K; TARPY, D R; RUEPPELL, O (2016) Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Experimental gerontology, 83: 15-21.
  • [43] NELSON, C M; IHLE, K E; FONDRK, M; PAGE JR R E; AMDAM, G V (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol, 5(3), e62.
  • [44] ORUÇ, H H (2019) ‘Pestisitlerin Bal Arıları Üzerine Etkisi ve Korunma’, Zehirsiz Sofralar Konferansı, İstanbul Kadir Has Üniversitesi, 23 Kasım 2019, İstanbul. http://zehirsizsofralar.org/wp-content/uploads/2020/01/Prof.-Dr.-Hasan-H%C3%BCseyin-Oru%C3%A7.pdf
  • [45] WILLIAMSON, S M; WILLIS, S J; WRIGHT, G A (2014) Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology, 23(8): 1409-1418.
  • [46] MACKENZIE, K E; WINSTON, M (1989) Effects of sublethal exposure to diazinon on longevity and temporal division of labor in the honey bee (Hymenoptera: Apidae). Journal of economic entomology, 82(1): 75-82.
  • [47] HENRY, M; BEGUIN, M; REQUIER, F; ROLLIN, O; ODOUX, J F; AUPINEL, P; ... DECOURTYE, A (2012) A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079): 348-350.
  • [48] ALBURAKI, M; STECKEL, S J; CHEN, D; MCDERMOTT, E; WEISS, M; SKINNER, J A; ... & ADAMCZYK, J (2017) Landscape and pesticide effects on honey bees: forager survival and expression of acetylcholinesterase and brain oxidative genes. Apidologie, 48(4): 556-571.
  • [49] JOHNSON, R M (2015) Honey bee toxicology. Annual review of entomology, 60.
  • [50] REHMAN, S; WALIULLAH, M I S (2012) Chlorpyrifos-induced neuro-oxidative damage in bee. Toxicology and Environmental Health Sciences, 4(1): 30-36.
  • [51] BLACQUIERE, T; SMAGGHE, G; VAN GESTEL, C A; MOMMAERTS, V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology, 21(4): 973-992.
  • [52] SŁOWIŃSKA, M; NYNCA, J; WILDE, J; BĄK, B; SIUDA, M; CIERESZKO, A (2016) Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide, and comparison to antioxidant capacity of seminal plasma. Apidologie, 47(2): 227-236.
  • [53] NICODEMO, D; MAIOLI, M A; MEDEIROS, H C; GUELFI, M; BALIEIRA, K V; DE JONG, D; MINGATTO, F E (2014) Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environmental toxicology and chemistry, 33(9): 2070-2075.
  • [54] NICODEMO, D; DE JONG, D; REIS, L G; ALMEIDA, J M V D; SANTOS, A A D; LISBOA, L A M (2018) Transgenic corn decreased total and key storage and lipid transport protein levels in honey bee hemolymph while seed treatment with imidacloprid reduced lipophorin levels. Journal of Apicultural Research, 57(2): 321-328.
  • [55] STRACHECKA, A; KRAUZE, M; OLSZEWSKI, K; BORSUK, G; PALEOLOG, J; MERSKA, M;… GRZYWNOWICZ, K (2014) Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Moscow), 79(11): 1192-1201.
  • [56] CARVALHO, S M; BELZUNCES, L P; CARVALHO, G A; BRUNET, J; BADIOU‐BENETEAU, A (2013) Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the honeybee Apis mellifera to insecticides. Environmental toxicology and chemistry, 32(9): 2117-2124.
  • [57] CASIDA, J E; DURKIN, K A (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58:99–117.
  • [58] HARDSTONE, M C; SCOTT, J G (2010) Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag. Sci. 66(11):1171–80.
  • [59] JOHNSON, R M; DAHLGREN, L; SIEGFRIED, B D; ELLIS, M D (2013) Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLOS ONE, 8(1):e54092.
  • [60] BARNETT, E A; CHARLTON, A J; FLETCHER, M R (2007) Incidents of bee poisoning with pesticides in the United Kingdom, 1994–2003. Pest Manag. Sci. 63(11):1051–57.
  • [61] JOHNSON, R M; ELLIS, M D; MULLIN, C A; FRAZIER, M (2010) Pesticides and honeybee toxicity—USA. Apidologie, 41(3):312–31.
  • [62] CHAUZAT, M P; FAUCON, J P (2007) Pesticide residues in bees wax samples collected from honey bee colonies (Apis mellifera L.) in France. Pest Manag. Sci. 63(11):1100–6.
  • [63] MULLIN, C A; FRAZIER, M; FRAZIER, J L; ASHCRAFT S; SIMONDS R; et al. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLOS ONE 5(3):e9754.
  • [64] HAARMANN T; SPIVAK M; WEAVER, D; WEAVER, B; GLENN, T (2002) Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. J. Econ. Entomol. 95(1):28–35.
  • [65] BERRY, J A; HOOD, W M; PIETRAVALLE, S; DELAPLANE, K S (2013) Field-level sublethal effects of approved bee hive chemicals on honey bees (Apis mellifera L). PLOS ONE, 8(10):e76536.
  • [66] ZHU, W; SCHMEHL, D R; MULLIN, C A; FRAZIER, J L (2014) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLOS ONE, 9(1):e77547.
  • [67] WILLIAMS, J R (2016). Biomarkers of oxidative stress in atrazine-treated honey bees: A laboratory and in-hive study (Doctoral dissertation, Virginia Polytechnic Institute and State University).
  • [68] BADIOU-BÉNÉTEAU, A; CARVALHO, S M; BRUNET, J L; CARVALHO, G A; BULETE, A; GIROUD, B; BELZUNCES, L P (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Ecotoxicology and environmental safety, 82: 22-31.
  • [69] SIMONE-FINSTROM, M; LI-BYARLAY, H; HUANG, M H; STRAND, M K; RUEPPELL, O; TARPY, D R (2016) Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scientific Reports, 6: 32023.
  • [70] ABDELKADER, F B; KAIRO, G; BONNET, M; BARBOUCHE, N; BELZUNCES, L. P; BRUNET, J L (2019) Effects of clothianidin on antioxidant enzyme activities and malondialdehyde level in honey bee drone semen. Journal of Apicultural Research, 58(5): 740-745.
  • [71] CHMIEL, J A; DAISLEY, B A; PITEK, A P; THOMPSON, G J; REID, G (2020) Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Frontiers in Ecology and Evolution, 8: 22.
  • [72] CHAKRABARTI, P; CARLSON, E A; LUCAS, H M; MELATHOPOULOS, A P; SAGILI, R R (2020) Field rates of Sivanto™(flupyradifurone) and Transform®(sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). Plos one, 15(5): e0233033.
  • [73] DUSSAUBAT, C; BRUNET, J L; HIGES, M; COLBOURNE, J K; LOPEZ, J; CHOI, J H; ...BONNET, M (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PloS one, 7(5): e37017.
  • [74] DUSSAUBAT, C; MAISONNASSE, A; CRAUSER, D; TCHAMITCHIAN, S; BONNET, M; COUSIN, M; ... LE CONTE, Y (2016) Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival. Scientific reports, 6(1): 1-7.
  • [75] TARIC, E; GLAVINIC, U; VEJNOVIC, B; STANOJKOVIC, A; ALEKSIC, N; DIMITRIJEVIC, V; STANIMIROVIC, Z (2020) Oxidative Stress, Endoparasite Prevalence and Social Immunity in Bee Colonies Kept Traditionally vs. Those Kept for Commercial Purposes. Insects, 11(5): 266.
  • [76] ANTÚNEZ, K; MARTÍN‐HERNÁNDEZ, R; PRIETO, L; MEANA, A; ZUNINO, P; HIGES, M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental microbiology, 11(9): 2284-2290.
  • [77] ALAUX, C; FOLSCHWEILLER, M; MCDONNELL, C; BESLAY, D; COUSIN, M; DUSSAUBAT, C;… LE CONTE, Y (2011) Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). Journal of invertebrate pathology, 106(3): 380-385.
  • [78] VIDAU, C; DIOGON, M; AUFAUVRE, J; FONTBONNE, R; VIGUÈS, B; BRUNET, J L; TEXIER, C; BIRON, D G; BLOT, N; ALAOUI, H E; et al. (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE, 6: e21550.
  • [79] HOLLOWAY, B; SYLVESTER, H A; BOURGEOIS, L; RINDERER, T E (2012) Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera. J. Apic. Res, 51: 154–163.
  • [80] SUN, J; TOWER, J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell Biol, 19: 216–228.
  • [81] LI, Z; HOU, M; QIU, Y; ZHAO, B; NIE, H; SU, S (2020) Changes in Antioxidant Enzymes Activity and Metabolomic Profiles in the Guts of Honey Bee (Apis mellifera) Larvae Infected with Ascosphaera apis. Insects, 11(7): 419.
  • [82] LIPIŃSKI, Z; ŻÓŁTOWSKA K (2005) Preliminary evidence associating oxidative stress in honey bee drone brood with Varroa destructor. Journal of apicultural research, 44(3): 126-128.
  • [83] BADOTRA, P; KUMAR, N R; HARJAI, K (2013) Varroa causes oxidative stress in Apis mellifera L. Journal of Global Biosciences, 2(6): 199-201.
  • [84] GÜLMEZ, Y; KİSA, D; CAN, I (2016) Effects of Varroa destructor Anderson & Trueman Infestation on Antioxidant Enzymes of Adult Worker Honey Bee (Apis mellifera L.). Asian Journal of Chemistry, 28(3): 663.
  • [85] ŁOPIEŃSKA-BIERNAT, E; SOKÓŁ, R; MICHALCZYK, M; ŻÓŁTOWSKA, K; STRYIŃSKI, R (2017) Biochemical status of feral honey bees (Apis mellifera) infested with various pathogens. Journal of Apicultural Research, 56(5): 606-615.
  • [86] LADAS, A (1972) Der einfluss verschiedener konstitutions- und umweltfaktoren auf die anfã"lligkeit der honigbiene (Apis mellifica L.) gegenãœber zwei insektiziden pflanzenschutzmitteln. Apidologie 3: 55–78.
  • [87] ALAUX, C; BRUNET, J L; DUSSAUBAT, C; MONDET, F; TCHAMITCHAN, S; et al. (2009) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12: 774–782.
  • [88] PARIS, L; ROUSSEL, M; PEREIRA, B; DELBAC, F; DIOGON, M (2017) Disruption of oxidative balance in the gut of the western honeybee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microbial biotechnology, 10(6): 1702-1717.
  • [89] ROUIBI, A; BOUCHEMA, W F; LOUCIF-AYAD, W; ACHOU, M; SOLTANI, N (2016) Risks assessment of two acaricides (fluvalinate and oxalic acid) in Apis mellifera intermissa (Hymenoptera, Apidae): acetylcholinesterase and glutathione S-transferase activities. J Entomol Zool Stud, 4(2): 503-508.
  • [90] NIELSON, A S; BRODSGAARD, C J; HANSEN H (2000) Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). ATLA, 28:437-443. 

  • [91] LOUCIF-AYAD, W; ARIBI, N; SOLTANI, N (2008) Evaluation of Secondary Effects of some Acaricides on Apis Mellifera Intermissa (Hymenoptera, Apidae): Acetylcholinesterase and Glutathione S-Transferase Activities. European Journal of Scientific Research, 21:642-649. 

  • [92] ZIKIC, B; ALEKSIC, N; RISTANIC, M; GLAVINIC, U; VEJNOVIC, B; KRNJAIC, I; STANIMIROVIC, Z (2020) Anti-Varroa Efficiency of Coumaphos and Its Influence on Oxidative Stress and Survival of Honey Bees. Acta Veterinaria, 70(3): 355-373.
  • [93] GREGORC, A; ALBURAKI, M; RINDERER, N; SAMPSON, B; KNIGHT, P R; KARIM, S; ADAMCZYK, J (2018) Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific reports, 8(1): 1-13.
  • [94] ZHANG, G; ZHANG, W; CUI, X; XU, B (2015) Zinc nutrition increases the antioxidant defenses of honey bees. Entomologia Experimentalis et Applicata, 156(3): 201-210.
There are 94 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Articles
Authors

Tuğçe Olgun 0000-0003-2386-1244

Miray Dayıoğlu 0000-0001-7825-3698

Neslihan Özsoy 0000-0002-2495-7603

Publication Date December 31, 2020
Submission Date November 2, 2020
Acceptance Date December 28, 2020
Published in Issue Year 2020 Volume: 20 Issue: 2

Cite

APA Olgun, T., Dayıoğlu, M., & Özsoy, N. (2020). PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis mellifera L.). Mellifera, 20(2), 32-52.
AMA Olgun T, Dayıoğlu M, Özsoy N. PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis mellifera L.). mellifera. December 2020;20(2):32-52.
Chicago Olgun, Tuğçe, Miray Dayıoğlu, and Neslihan Özsoy. “PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis Mellifera L.)”. Mellifera 20, no. 2 (December 2020): 32-52.
EndNote Olgun T, Dayıoğlu M, Özsoy N (December 1, 2020) PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis mellifera L.). Mellifera 20 2 32–52.
IEEE T. Olgun, M. Dayıoğlu, and N. Özsoy, “PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis mellifera L.)”, mellifera, vol. 20, no. 2, pp. 32–52, 2020.
ISNAD Olgun, Tuğçe et al. “PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis Mellifera L.)”. Mellifera 20/2 (December 2020), 32-52.
JAMA Olgun T, Dayıoğlu M, Özsoy N. PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis mellifera L.). mellifera. 2020;20:32–52.
MLA Olgun, Tuğçe et al. “PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis Mellifera L.)”. Mellifera, vol. 20, no. 2, 2020, pp. 32-52.
Vancouver Olgun T, Dayıoğlu M, Özsoy N. PESTICIDE and PATHOGEN INDUCED OXIDATIVE STRESS IN HONEY BEES (Apis mellifera L.). mellifera. 2020;20(2):32-5.