Detection of COVID-19 infection from CT images using the medical photogrammetry technique
Year 2023,
, 42 - 54, 15.12.2023
Hatice Çatal Reis
,
Veysel Türk
,
Serhat Kaya
Abstract
Medical data such as computed tomography (CT), magnetic resonance imaging (MRI), and Ultrasound images are used in medical photogrammetry. CT images have been used frequently in recent years for the diagnosis of COVID-19 disease, which has contagious and fatal symptoms. CT is an effective method for early detection of lung anomalies due to COVID-19 infection. Machine learning (ML) techniques can be used to detect and diagnose medical diseases. In particular, classification methods are applied for disease diagnosis and diagnosis. This study proposes traditional machine learning algorithms Random Forest, Logistic Regression, K-Nearest Neighbor and Naive Bayes, and an ensemble learning model to detect COVID-19 anomalies using CT images. According to the experimental findings, the proposed ensemble learning model produced an accuracy of 96.71%. This study can help identify the fastest and most accurate algorithm that predicts CT images with Covid-19 during the epidemic process. In addition, machine learning-based approaches can support healthcare professionals and radiologists in the diagnostic phase.
References
- Shiri, I., Salimi, Y., Pakbin, M., Hajianfar, G., Avval, A. H., Sanaat, A., ... & Zaidi, H. (2022). COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Computers in Biology and Medicine, 145, 105467.
https://doi.org/10.1016/j.compbiomed.2022.105467
- Del Rio, C., Omer, S. B., & Malani, P. N. (2022). Winter of Omicron—the evolving COVID-19 pandemic. Jama, 327(4), 319-320.
https://doi.org/10.1001/jama.2021.24315.
- Başeğmez, M., & Aydin, C. C. (2022). Türkiye'de COVID-19 sürecinde alınan önlemler çerçevesinde okul bahçe ve sınıflarının CBS ile değerlendirilmesi. Geomatik, 7(3), 209-219.
https://doi.org/10.29128/geomatik.971403
- Crawford, J., & Cifuentes-Faura, J. (2022). Sustainability in higher education during the COVID-19 pandemic: A systematic review. Sustainability, 14(3), 1879.
https://doi.org/10.3390/su14031879
- Maatuk, A. M., Elberkawi, E. K., Aljawarneh, S., Rashaideh, H., & Alharbi, H. (2022). The COVID-19 pandemic and E-learning: challenges and opportunities from the perspective of students and instructors. Journal of Computing in Higher Education, 34(1), 21-38. https://doi.org/10.1007/s12528-021-09274-2
- Yig, K. G. (2023). Experiences of mathematics education teacher candidates in the emergency remote education: Reflections on the new normal. Mehmet Akif Ersoy University Journal of Education Faculty, (65), 549-577. https://doi.org/10.21764/maeuefd.1162499.
- Panneer, S., Kantamaneni, K., Akkayasamy, V. S., Susairaj, A. X., Panda, P. K., Acharya, S. S., ... & Pushparaj, R. R. B. (2022). The great lockdown in the wake of COVID-19 and its implications: lessons for low and middle-income countries. International Journal of Environmental Research and Public Health, 19(1), 610. https://doi.org/10.3390/ijerph19010610
- De Miquel, C., Domènech-Abella, J., Felez-Nobrega, M., Cristóbal-Narváez, P., Mortier, P., Vilagut, G., ... & Haro, J. M. (2022). The mental health of employees with job loss and income loss during the COVID-19 pandemic: the mediating role of perceived financial stress. International Journal of Environmental Research and Public Health, 19(6), 3158. https://doi.org/10.3390/ijerph19063158
- Aldhafiri, F. K. (2022). COVID-19 and gut dysbiosis, understanding the role of probiotic supplements in reversing gut dysbiosis and immunity. Nutrition Clinique et Métabolisme, 36(3), 153-161. https://doi.org/10.1016/j.nupar.2022.01.003
- Alves, M. H. M. E., Mahnke, L. C., Macedo, T. C., dos Santos Silva, T. K., & Junior, L. B. C. (2022). The enzymes in COVID-19: A review. Biochimie, 197, 38-48. https://doi.org/10.1016/j.biochi.2022.01.015
- Chowdhury, M. E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. B., ... & Islam, M. T. (2020). Can AI help in screening viral and COVID-19 pneumonia?. IEEE Access, 8, 132665-132676. https://doi.org/10.1109/ACCESS.2020.3010287.
- Siripanthong, B., Asatryan, B., Hanff, T. C., Chatha, S. R., Khanji, M. Y., Ricci, F., ... & Chahal, C. A. A. (2022). The pathogenesis and long-term consequences of COVID-19 cardiac injury. Basic to Translational Science, 7(3_Part_1), 294-308. https://doi.org/10.1016/j.jacbts.2021.10.011.
- Raghav, A., Khan, Z. A., Upadhayay, V. K., Tripathi, P., Gautam, K. A., Mishra, B. K., ... & Jeong, G. B. (2021). Mesenchymal stem cell-derived exosomes exhibit promising potential for treating SARS-CoV-2-infected patients. Cells, 10(3), 587. https://doi.org/10.3390/cells10030587
- Cui, X., Chen, W., Zhou, H., Gong, Y., Zhu, B., Lv, X., ... & Ma, H. (2021). Pulmonary edema in COVID-19 patients: mechanisms and treatment potential. Frontiers in Pharmacology, 12, 664349. https://doi.org/10.3389/fphar.2021.664349
- Puntmann, V. O., Carerj, M. L., Wieters, I., Fahim, M., Arendt, C., Hoffmann, J., ... & Nagel, E. (2020). Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA cardiology, 5(11), 1265-1273. https://doi.org/10.1001/jamacardio.2020.3557.
- Douaud, G., Lee, S., Alfaro-Almagro, F., Arthofer, C., Wang, C., McCarthy, P., ... & Smith, S. M. (2022). SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature, 604(7907), 697-707. https://doi.org/10.1038/s41586-022-04569-5
- Sagris, M., Theofilis, P., Antonopoulos, A. S., Oikonomou, E., Tsioufis, K., & Tousoulis, D. (2022). Genetic predisposition and inflammatory inhibitors in COVID-19: where do we Stand?. Biomedicines, 10(2), 242.
https://doi.org/10.3390/biomedicines10020242
- Çatal Reis, H. (2018). Bone anomaly of the foot detection using medical photogrammetry. International Journal of Engineering and Geosciences, 3(1), 1-5. https://doi.org/10.26833/ijeg.333686.
- Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., ... & Xia, L. (2020). Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2), E32-E40. https://doi.org/10.1148/radiol.2020200642
- La Salvia, M., Secco, G., Torti, E., Florimbi, G., Guido, L., Lago, P., ... & Leporati, F. (2021). Deep learning and lung ultrasound for Covid-19 pneumonia detection and severity classification. Computers in Biology and Medicine, 136, 104742. https://doi.org/10.1016/j.compbiomed.2021.104742
- Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020). Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology, 296(2), E115-E117. https://doi.org/10.1148/radiol.2020200432
- Gupta, A., Gupta, S., & Katarya, R. (2021). InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Applied Soft Computing, 99, 106859. https://doi.org/10.1016/j.asoc.2020.106859
- Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology, 296(2), E15-E25. https://doi.org/10.1148/radiol.2020200490
- Ojha, V., Mani, A., Pandey, N. N., Sharma, S., & Kumar, S. (2020). CT in coronavirus disease 2019 (COVID-19): a systematic review of chest CT findings in 4410 adult patients. European radiology, 30, 6129-6138. https://doi.org/10.1007/s00330-020-06975-7
- Tabatabaei, S. M. H., Talari, H., Moghaddas, F., & Rajebi, H. (2020). CT features and short-term prognosis of COVID-19 pneumonia: a single-center study from Kashan, Iran. Radiology: Cardiothoracic Imaging, 2(2), e200130. https://doi.org/10.1148/ryct.2020200130
- Wang, Y., Dong, C., Hu, Y., Li, C., Ren, Q., Zhang, X., ... & Zhou, M. (2020). Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology, 296(2), E55-E64.
https://doi.org/10.1148/radiol.2020200843
- Hani, C., Trieu, N. H., Saab, I., Dangeard, S., Bennani, S., Chassagnon, G., & Revel, M. P. (2020). COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagnostic and Interventional Imaging, 101(5), 263-268. https://doi.org/10.1016/j.diii.2020.03.014
- Wang, K., Kang, S., Tian, R., Zhang, X., & Wang, Y. (2020). Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area. Clinical Radiology, 75(5), 341-347. https://doi.org/10.1016/j.crad.2020.03.004
- Liu, G., Wang, G., Yang, Z., Liu, G., Ma, H., Lv, Y., ... & Zhu, W. (2022). A lung ultrasound-based nomogram for the prediction of refractory Mycoplasma pneumoniae pneumonia in hospitalized children. Infection and Drug Resistance, 15, 6343-6355. https://doi.org/10.2147/IDR.S387890
- Kaur, N., & Mittal, A. (2022). CADxReport: Chest x-ray report generation using co-attention mechanism and reinforcement learning. Computers in Biology and Medicine, 145, 105498.
https://doi.org/10.1016/j.compbiomed.2022.105498
- Gakhar, M., & Aggarwal, A. (2022). ThoraciNet: thoracic abnormality detection and disease classification using fusion DCNNs. Physical and Engineering Sciences in Medicine, 45, 961-970. https://doi.org/10.1007/s13246-022-01137-z
- Packhäuser, K., Gündel, S., Münster, N., Syben, C., Christlein, V., & Maier, A. (2022). Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data. Scientific Reports, 12(1), 14851. https://doi.org/10.1038/s41598-022-19045-3
- Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S., ... & Schönlieb, C. B. (2021). Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence, 3(3), 199-217. https://doi.org/10.1038/s42256-021-00307-0
- Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A. R., Reuter, U., ... & Atkinson, P. M. (2020). Covid-19 outbreak prediction with machine learning. Algorithms, 13, 249.
https://doi.org/10.3390/a13100249.
- Canayaz, M., Şehribanoğlu, S., Özdağ, R., & Demir, M. (2022). COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms. Neural Computing and Applications, 34(7), 5349-5365. https://doi.org/10.1007/s00521-022-07052-4
- Muurlink, O. T., Stephenson, P., Islam, M. Z., & Taylor-Robinson, A. W. (2018). Long-term predictors of dengue outbreaks in Bangladesh: A data mining approach. Infectious Disease Modelling, 3, 322-330. https://doi.org/10.1016/j.idm.2018.11.004
- Chen, Y. (2021). Covid-19 classification based on gray-level co-occurrence matrix and support vector machine. COVID-19: Prediction, Decision-making, and its Impacts, 47-55.
https://doi.org/10.1007/978-981-15-9682-7_6
- Hasoon, J. N., Fadel, A. H., Hameed, R. S., Mostafa, S. A., Khalaf, B. A., Mohammed, M. A., & Nedoma, J. (2021). COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images. Results in Physics, 31, 105045. https://doi.org/10.1016/j.rinp.2021.105045
- Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint https://doi.org/10.48550/arXiv.2003.09424.
- Yang, N., Liu, F., Li, C., Xiao, W., Xie, S., Yuan, S., ... & Jiang, G. (2021). Diagnostic classification of coronavirus disease 2019 (COVID-19) and other pneumonias using radiomics features in CT chest images. Scientific Reports, 11, 17885. https://doi.org/10.1038/s41598-021-97497-9
- Currie, G., Hawk, K. E., Rohren, E., Vial, A., & Klein, R. (2019). Machine learning and deep learning in medical imaging: intelligent imaging. Journal of Medical Imaging and Radiation Sciences, 50(4), 477-487. https://doi.org/10.1016/j.jmir.2019.09.005
- Tang, A., Tam, R., Cadrin-Chênevert, A., Guest, W., Chong, J., Barfett, J., ... & Canadian Association of Radiologists (CAR) Artificial Intelligence Working Group. (2018). Canadian Association of Radiologists white paper on artificial intelligence in radiology. Canadian Association of Radiologists Journal, 69(2), 120-135. https://doi.org/10.1016/j.carj.2018.02.0
- Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. Radiographics, 37(2), 505-515. https://doi.org/10.1148/rg.2017160130
- Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., & Xie, P. (2020). COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint https://doi.org/10.48550/arXiv.2003.13865
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708. https://doi.org/10.1109/CVPR.2017.243
- Avci, C., Budak, M., Yagmur, N. & Balcik, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.987605
- Erdem, F., Derinpinar, M.A., Nasirzadehdizaji, R., Oy, S., Seker, D. Z. & Bayram, B. (2018). Rastgele orman yöntemi kullanılarak kıyı çizgisi çıkarımı İstanbul Örneği. Geomatik, 3 (2), 100-107.
https://doi.org/10.29128/geomatik.362179
- Akar, O. & Tunc Gormus, E. (2019). Göktürk-2 ve Hyperion EO-1 uydu görüntülerinden rastgele orman sınıflandırıcısı ve destek vektör makineleri ile arazi kullanım haritalarının üretilmesi. Geomatik, 4 (1), 68-81. https://doi.org/10.29128/geomatik.476668
- Duman, H. S., & Başaraner, M. (2022). Şekil göstergeleri ve topluluk öğrenmesi sınıflandırma algoritmaları ile bina detaylarının şekil karmaşıklık analizi. Geomatik, 7(3), 197-208.
https://doi.org/10.29128/geomatik.947334
- Gong, M., Bai, Y., Qin, J., Wang, J., Yang, P., & Wang, S. (2020). Gradient boosting machine for predicting return temperature of district heating system: A case study for residential buildings in Tianjin. Journal of Building Engineering, 27, 100950. https://doi.org/10.1016/j.jobe.2019.100950
- Nguyen, P. T., Ha, D. H., Avand, M., Jaafari, A., Nguyen, H. D., Al-Ansari, N., ... & Pham, B. T. (2020). Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10(7), 2469. https://doi.org/10.3390/app10072469
- Siddique, M. A. B., Sakib, S., & Rahman, M. A. (2019, December). Performance analysis of deep autoencoder and NCA dimensionality reduction techniques with KNN, ENN and SVM classifiers. 2nd International Conference on Innovation in Engineering and Technology (ICIET), 1-6. https://doi.org/10.1109/ICIET48527.2019.9290722
- Apaydin, C., & Abdikan, S. (2021). Fındık bahçelerinin Sentinel-2 verileri kullanılarak piksel tabanlı sınıflandırma yöntemleriyle belirlenmesi. Geomatik, 6(2), 107-114.
https://doi.org/10.29128/geomatik.705988
- Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J. J., ... & Ahmad, A. (2020). Flood detection and susceptibility mapping using Sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sensing, 12(2), 266. https://doi.org/10.3390/rs12020266
- Hou, S., Liu, Y., & Yang, Q. (2022). Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 123-143. https://doi.org/10.1016/j.jrmge.2021.05.004
- Turk, V., Catal Reis, H. & Kaya, S. (2022). Automatic prediction of covid-19 from chest-computed tomography (CT) images using deep learning architectures. Gumushane University Journal of Science. https://doi.org/10.17714/gumusfenbil.1002738.
Year 2023,
, 42 - 54, 15.12.2023
Hatice Çatal Reis
,
Veysel Türk
,
Serhat Kaya
References
- Shiri, I., Salimi, Y., Pakbin, M., Hajianfar, G., Avval, A. H., Sanaat, A., ... & Zaidi, H. (2022). COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Computers in Biology and Medicine, 145, 105467.
https://doi.org/10.1016/j.compbiomed.2022.105467
- Del Rio, C., Omer, S. B., & Malani, P. N. (2022). Winter of Omicron—the evolving COVID-19 pandemic. Jama, 327(4), 319-320.
https://doi.org/10.1001/jama.2021.24315.
- Başeğmez, M., & Aydin, C. C. (2022). Türkiye'de COVID-19 sürecinde alınan önlemler çerçevesinde okul bahçe ve sınıflarının CBS ile değerlendirilmesi. Geomatik, 7(3), 209-219.
https://doi.org/10.29128/geomatik.971403
- Crawford, J., & Cifuentes-Faura, J. (2022). Sustainability in higher education during the COVID-19 pandemic: A systematic review. Sustainability, 14(3), 1879.
https://doi.org/10.3390/su14031879
- Maatuk, A. M., Elberkawi, E. K., Aljawarneh, S., Rashaideh, H., & Alharbi, H. (2022). The COVID-19 pandemic and E-learning: challenges and opportunities from the perspective of students and instructors. Journal of Computing in Higher Education, 34(1), 21-38. https://doi.org/10.1007/s12528-021-09274-2
- Yig, K. G. (2023). Experiences of mathematics education teacher candidates in the emergency remote education: Reflections on the new normal. Mehmet Akif Ersoy University Journal of Education Faculty, (65), 549-577. https://doi.org/10.21764/maeuefd.1162499.
- Panneer, S., Kantamaneni, K., Akkayasamy, V. S., Susairaj, A. X., Panda, P. K., Acharya, S. S., ... & Pushparaj, R. R. B. (2022). The great lockdown in the wake of COVID-19 and its implications: lessons for low and middle-income countries. International Journal of Environmental Research and Public Health, 19(1), 610. https://doi.org/10.3390/ijerph19010610
- De Miquel, C., Domènech-Abella, J., Felez-Nobrega, M., Cristóbal-Narváez, P., Mortier, P., Vilagut, G., ... & Haro, J. M. (2022). The mental health of employees with job loss and income loss during the COVID-19 pandemic: the mediating role of perceived financial stress. International Journal of Environmental Research and Public Health, 19(6), 3158. https://doi.org/10.3390/ijerph19063158
- Aldhafiri, F. K. (2022). COVID-19 and gut dysbiosis, understanding the role of probiotic supplements in reversing gut dysbiosis and immunity. Nutrition Clinique et Métabolisme, 36(3), 153-161. https://doi.org/10.1016/j.nupar.2022.01.003
- Alves, M. H. M. E., Mahnke, L. C., Macedo, T. C., dos Santos Silva, T. K., & Junior, L. B. C. (2022). The enzymes in COVID-19: A review. Biochimie, 197, 38-48. https://doi.org/10.1016/j.biochi.2022.01.015
- Chowdhury, M. E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. B., ... & Islam, M. T. (2020). Can AI help in screening viral and COVID-19 pneumonia?. IEEE Access, 8, 132665-132676. https://doi.org/10.1109/ACCESS.2020.3010287.
- Siripanthong, B., Asatryan, B., Hanff, T. C., Chatha, S. R., Khanji, M. Y., Ricci, F., ... & Chahal, C. A. A. (2022). The pathogenesis and long-term consequences of COVID-19 cardiac injury. Basic to Translational Science, 7(3_Part_1), 294-308. https://doi.org/10.1016/j.jacbts.2021.10.011.
- Raghav, A., Khan, Z. A., Upadhayay, V. K., Tripathi, P., Gautam, K. A., Mishra, B. K., ... & Jeong, G. B. (2021). Mesenchymal stem cell-derived exosomes exhibit promising potential for treating SARS-CoV-2-infected patients. Cells, 10(3), 587. https://doi.org/10.3390/cells10030587
- Cui, X., Chen, W., Zhou, H., Gong, Y., Zhu, B., Lv, X., ... & Ma, H. (2021). Pulmonary edema in COVID-19 patients: mechanisms and treatment potential. Frontiers in Pharmacology, 12, 664349. https://doi.org/10.3389/fphar.2021.664349
- Puntmann, V. O., Carerj, M. L., Wieters, I., Fahim, M., Arendt, C., Hoffmann, J., ... & Nagel, E. (2020). Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA cardiology, 5(11), 1265-1273. https://doi.org/10.1001/jamacardio.2020.3557.
- Douaud, G., Lee, S., Alfaro-Almagro, F., Arthofer, C., Wang, C., McCarthy, P., ... & Smith, S. M. (2022). SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature, 604(7907), 697-707. https://doi.org/10.1038/s41586-022-04569-5
- Sagris, M., Theofilis, P., Antonopoulos, A. S., Oikonomou, E., Tsioufis, K., & Tousoulis, D. (2022). Genetic predisposition and inflammatory inhibitors in COVID-19: where do we Stand?. Biomedicines, 10(2), 242.
https://doi.org/10.3390/biomedicines10020242
- Çatal Reis, H. (2018). Bone anomaly of the foot detection using medical photogrammetry. International Journal of Engineering and Geosciences, 3(1), 1-5. https://doi.org/10.26833/ijeg.333686.
- Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., ... & Xia, L. (2020). Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2), E32-E40. https://doi.org/10.1148/radiol.2020200642
- La Salvia, M., Secco, G., Torti, E., Florimbi, G., Guido, L., Lago, P., ... & Leporati, F. (2021). Deep learning and lung ultrasound for Covid-19 pneumonia detection and severity classification. Computers in Biology and Medicine, 136, 104742. https://doi.org/10.1016/j.compbiomed.2021.104742
- Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020). Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology, 296(2), E115-E117. https://doi.org/10.1148/radiol.2020200432
- Gupta, A., Gupta, S., & Katarya, R. (2021). InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Applied Soft Computing, 99, 106859. https://doi.org/10.1016/j.asoc.2020.106859
- Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology, 296(2), E15-E25. https://doi.org/10.1148/radiol.2020200490
- Ojha, V., Mani, A., Pandey, N. N., Sharma, S., & Kumar, S. (2020). CT in coronavirus disease 2019 (COVID-19): a systematic review of chest CT findings in 4410 adult patients. European radiology, 30, 6129-6138. https://doi.org/10.1007/s00330-020-06975-7
- Tabatabaei, S. M. H., Talari, H., Moghaddas, F., & Rajebi, H. (2020). CT features and short-term prognosis of COVID-19 pneumonia: a single-center study from Kashan, Iran. Radiology: Cardiothoracic Imaging, 2(2), e200130. https://doi.org/10.1148/ryct.2020200130
- Wang, Y., Dong, C., Hu, Y., Li, C., Ren, Q., Zhang, X., ... & Zhou, M. (2020). Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology, 296(2), E55-E64.
https://doi.org/10.1148/radiol.2020200843
- Hani, C., Trieu, N. H., Saab, I., Dangeard, S., Bennani, S., Chassagnon, G., & Revel, M. P. (2020). COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagnostic and Interventional Imaging, 101(5), 263-268. https://doi.org/10.1016/j.diii.2020.03.014
- Wang, K., Kang, S., Tian, R., Zhang, X., & Wang, Y. (2020). Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area. Clinical Radiology, 75(5), 341-347. https://doi.org/10.1016/j.crad.2020.03.004
- Liu, G., Wang, G., Yang, Z., Liu, G., Ma, H., Lv, Y., ... & Zhu, W. (2022). A lung ultrasound-based nomogram for the prediction of refractory Mycoplasma pneumoniae pneumonia in hospitalized children. Infection and Drug Resistance, 15, 6343-6355. https://doi.org/10.2147/IDR.S387890
- Kaur, N., & Mittal, A. (2022). CADxReport: Chest x-ray report generation using co-attention mechanism and reinforcement learning. Computers in Biology and Medicine, 145, 105498.
https://doi.org/10.1016/j.compbiomed.2022.105498
- Gakhar, M., & Aggarwal, A. (2022). ThoraciNet: thoracic abnormality detection and disease classification using fusion DCNNs. Physical and Engineering Sciences in Medicine, 45, 961-970. https://doi.org/10.1007/s13246-022-01137-z
- Packhäuser, K., Gündel, S., Münster, N., Syben, C., Christlein, V., & Maier, A. (2022). Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data. Scientific Reports, 12(1), 14851. https://doi.org/10.1038/s41598-022-19045-3
- Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S., ... & Schönlieb, C. B. (2021). Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence, 3(3), 199-217. https://doi.org/10.1038/s42256-021-00307-0
- Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A. R., Reuter, U., ... & Atkinson, P. M. (2020). Covid-19 outbreak prediction with machine learning. Algorithms, 13, 249.
https://doi.org/10.3390/a13100249.
- Canayaz, M., Şehribanoğlu, S., Özdağ, R., & Demir, M. (2022). COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms. Neural Computing and Applications, 34(7), 5349-5365. https://doi.org/10.1007/s00521-022-07052-4
- Muurlink, O. T., Stephenson, P., Islam, M. Z., & Taylor-Robinson, A. W. (2018). Long-term predictors of dengue outbreaks in Bangladesh: A data mining approach. Infectious Disease Modelling, 3, 322-330. https://doi.org/10.1016/j.idm.2018.11.004
- Chen, Y. (2021). Covid-19 classification based on gray-level co-occurrence matrix and support vector machine. COVID-19: Prediction, Decision-making, and its Impacts, 47-55.
https://doi.org/10.1007/978-981-15-9682-7_6
- Hasoon, J. N., Fadel, A. H., Hameed, R. S., Mostafa, S. A., Khalaf, B. A., Mohammed, M. A., & Nedoma, J. (2021). COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images. Results in Physics, 31, 105045. https://doi.org/10.1016/j.rinp.2021.105045
- Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint https://doi.org/10.48550/arXiv.2003.09424.
- Yang, N., Liu, F., Li, C., Xiao, W., Xie, S., Yuan, S., ... & Jiang, G. (2021). Diagnostic classification of coronavirus disease 2019 (COVID-19) and other pneumonias using radiomics features in CT chest images. Scientific Reports, 11, 17885. https://doi.org/10.1038/s41598-021-97497-9
- Currie, G., Hawk, K. E., Rohren, E., Vial, A., & Klein, R. (2019). Machine learning and deep learning in medical imaging: intelligent imaging. Journal of Medical Imaging and Radiation Sciences, 50(4), 477-487. https://doi.org/10.1016/j.jmir.2019.09.005
- Tang, A., Tam, R., Cadrin-Chênevert, A., Guest, W., Chong, J., Barfett, J., ... & Canadian Association of Radiologists (CAR) Artificial Intelligence Working Group. (2018). Canadian Association of Radiologists white paper on artificial intelligence in radiology. Canadian Association of Radiologists Journal, 69(2), 120-135. https://doi.org/10.1016/j.carj.2018.02.0
- Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. Radiographics, 37(2), 505-515. https://doi.org/10.1148/rg.2017160130
- Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., & Xie, P. (2020). COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint https://doi.org/10.48550/arXiv.2003.13865
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708. https://doi.org/10.1109/CVPR.2017.243
- Avci, C., Budak, M., Yagmur, N. & Balcik, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.987605
- Erdem, F., Derinpinar, M.A., Nasirzadehdizaji, R., Oy, S., Seker, D. Z. & Bayram, B. (2018). Rastgele orman yöntemi kullanılarak kıyı çizgisi çıkarımı İstanbul Örneği. Geomatik, 3 (2), 100-107.
https://doi.org/10.29128/geomatik.362179
- Akar, O. & Tunc Gormus, E. (2019). Göktürk-2 ve Hyperion EO-1 uydu görüntülerinden rastgele orman sınıflandırıcısı ve destek vektör makineleri ile arazi kullanım haritalarının üretilmesi. Geomatik, 4 (1), 68-81. https://doi.org/10.29128/geomatik.476668
- Duman, H. S., & Başaraner, M. (2022). Şekil göstergeleri ve topluluk öğrenmesi sınıflandırma algoritmaları ile bina detaylarının şekil karmaşıklık analizi. Geomatik, 7(3), 197-208.
https://doi.org/10.29128/geomatik.947334
- Gong, M., Bai, Y., Qin, J., Wang, J., Yang, P., & Wang, S. (2020). Gradient boosting machine for predicting return temperature of district heating system: A case study for residential buildings in Tianjin. Journal of Building Engineering, 27, 100950. https://doi.org/10.1016/j.jobe.2019.100950
- Nguyen, P. T., Ha, D. H., Avand, M., Jaafari, A., Nguyen, H. D., Al-Ansari, N., ... & Pham, B. T. (2020). Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10(7), 2469. https://doi.org/10.3390/app10072469
- Siddique, M. A. B., Sakib, S., & Rahman, M. A. (2019, December). Performance analysis of deep autoencoder and NCA dimensionality reduction techniques with KNN, ENN and SVM classifiers. 2nd International Conference on Innovation in Engineering and Technology (ICIET), 1-6. https://doi.org/10.1109/ICIET48527.2019.9290722
- Apaydin, C., & Abdikan, S. (2021). Fındık bahçelerinin Sentinel-2 verileri kullanılarak piksel tabanlı sınıflandırma yöntemleriyle belirlenmesi. Geomatik, 6(2), 107-114.
https://doi.org/10.29128/geomatik.705988
- Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J. J., ... & Ahmad, A. (2020). Flood detection and susceptibility mapping using Sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sensing, 12(2), 266. https://doi.org/10.3390/rs12020266
- Hou, S., Liu, Y., & Yang, Q. (2022). Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 123-143. https://doi.org/10.1016/j.jrmge.2021.05.004
- Turk, V., Catal Reis, H. & Kaya, S. (2022). Automatic prediction of covid-19 from chest-computed tomography (CT) images using deep learning architectures. Gumushane University Journal of Science. https://doi.org/10.17714/gumusfenbil.1002738.