Research Article
BibTex RIS Cite

UAV-based topographical mapping and accuracy assessment of orthophoto using GCP

Year 2024, , 1 - 8, 15.06.2024
https://doi.org/10.53093/mephoj.1350426

Abstract

For smaller locations, the traditional aerial photogrammetry techniques utilizing helicopters or airplanes are expensive and difficult. A new competitive strategy is necessary for quick spatial data collecting at a low cost and in a short amount of time for a developing nation like Nepal where geospatial data is in great demand. Currently, the Unmanned Aerial Vehicle (UAV) has become an alternative for different engineering applications, especially in surveying, one of these applications is for making a topographical map. This study demonstrates how this can be achieved using one of the evolving remote sensing technologies, Unmanned Aerial Vehicles (UAV). Besides, this study also involves image processing and topographic map production using Pix4D and GIS environments. For this study, the DJI Mavic Air-2 Advanced quadcopter collected about 207 images at a flying height of 80 m above the Kathmandu University area. An orthophoto of 2.4 cm GSD covering 127064 sq. Meter of the area was produced. The RMSE of 5.37 cm in X 4.94 cm in Y and 6.1 cm in Z was achieved with appropriate checkpoints. The measurements in the orthophoto replicated the field measurements to an error of less than 0.5% of the actual dimensions.

References

  • Tampubolon, W., & Reinhardt, W. (2014). UAV data processing for large scale topographical mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 565-572. https://doi.org/10.5194/isprsarchives-XL-5-565-2014, 2014.
  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38(4), 421-430. https://doi.org/10.1002/esp.3366
  • Quaye-Ballard, N. L., Asenso-Gyambibi, D., & Quaye-Ballard, J. (2020). Unmanned aerial vehicle for topographical mapping of inaccessible land areas in Ghana: A Cost-Effective Approach. FIG Working Week.
  • Ahmad, M. J., Ahmad, A., & Kanniah, K. D. (2018, June). Large scale topographic mapping based on unmanned aerial vehicle and aerial photogrammetric technique. In IOP Conference Series: Earth and Environmental Science, 169(1), 012077. https://doi.org/10.1088/1755-1315/169/1/012077
  • Singhal, G., Bansod, B., & Mathew, L. (2018). Unmanned aerial vehicle classification, applications and challenges: A review. PrePrints, 2018110601. https://doi.org/10.20944/preprints201811.0601.v1
  • Bi, H., Zheng, W., Ren, Z., Zeng, J., & Yu, J. (2017). Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. International Journal of Remote Sensing, 38(8-10), 2495-2510. https://doi.org/10.1080/01431161.2016.1249308
  • Isaac-Medina, B. K., Poyser, M., Organisciak, D., Willcocks, C. G., Breckon, T. P., & Shum, H. P. (2021). Unmanned aerial vehicle visual detection and tracking using deep neural networks: A performance benchmark. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 1223-1232.
  • Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2012). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 25-31. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011
  • Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education.
  • Mikhail, E. M., Bethel, J. S., & McGlone, J. C. (2001). Introduction to modern photogrammetry. John Wiley & Sons.
  • Cramer, M., Stallmann, D., & Haala, N. (2000). Direct georeferencing using GPS/inertial exterior orientations for photogrammetric applications. International Archives of Photogrammetry and Remote Sensing, 33(B3/1; PART 3), 198-205.
  • Syetiawan, A., Gularso, H., Kusnadi, G. I., & Pramudita, G. N. (2020). Precise topographic mapping using direct georeferencing in UAV. In IOP Conference Series: Earth and Environmental Science, 500(1), 012029. https://doi.org/10.1088/1755-1315/500/1/012029
  • Chi, Y. Y., Lee, Y. F., & Tsai, S. E. (2016). Study on high accuracy topographic mapping via UAV-based images. In IOP Conference Series: Earth and Environmental Science, 44(3), 032006. https://doi.org/10.1088/1755-1315/44/3/032006
  • Awasthi, B., Karki, S., Regmi, P., Dhami, D. S., Thapa, S., & Panday, U. S. (2020). Analyzing the effect of distribution pattern and number of GCPs on overall accuracy of UAV photogrammetric results. In Proceedings of UASG 2019: Unmanned Aerial System in Geomatics, 1, 339-354. https://doi.org/10.1007/978-3-030-37393-1_29
  • Pix4D S. A., (2017). User manual Pix4Dmapper 4.1, 305p.
  • ASPRS (2014). ASPRS positional accuracy standards for digital geospatial data. Photogrammetric Engineering & Remote Sensing, 81(3), A1-A26. https://doi.org/10.14358/PERS.81.3.A1-A26
  • Chudal, K. K., Lamsal, P., & Oli, P. P. (2020). Drone based urban planning in Nepal. FIG Working Week.
  • Barry, P., & Coakley, R. (2013). Accuracy of UAV photogrammetry compared with network RTK GPS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 2731.
  • Udin, W. S., & Ahmad, A. (2014). Assessment of photogrammetric mapping accuracy based on variation flying altitude using unmanned aerial vehicle. In IOP conference series: Earth and Environmental Science, 18(1), 012027. https://doi.org/10.1088/1755-1315/18/1/012027
  • ASPRS (2013). ASPRS accuracy standards for digital geospatial data. Photogrammetric Engineering & Remote Sensing, 1073-1085
Year 2024, , 1 - 8, 15.06.2024
https://doi.org/10.53093/mephoj.1350426

Abstract

References

  • Tampubolon, W., & Reinhardt, W. (2014). UAV data processing for large scale topographical mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 565-572. https://doi.org/10.5194/isprsarchives-XL-5-565-2014, 2014.
  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38(4), 421-430. https://doi.org/10.1002/esp.3366
  • Quaye-Ballard, N. L., Asenso-Gyambibi, D., & Quaye-Ballard, J. (2020). Unmanned aerial vehicle for topographical mapping of inaccessible land areas in Ghana: A Cost-Effective Approach. FIG Working Week.
  • Ahmad, M. J., Ahmad, A., & Kanniah, K. D. (2018, June). Large scale topographic mapping based on unmanned aerial vehicle and aerial photogrammetric technique. In IOP Conference Series: Earth and Environmental Science, 169(1), 012077. https://doi.org/10.1088/1755-1315/169/1/012077
  • Singhal, G., Bansod, B., & Mathew, L. (2018). Unmanned aerial vehicle classification, applications and challenges: A review. PrePrints, 2018110601. https://doi.org/10.20944/preprints201811.0601.v1
  • Bi, H., Zheng, W., Ren, Z., Zeng, J., & Yu, J. (2017). Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. International Journal of Remote Sensing, 38(8-10), 2495-2510. https://doi.org/10.1080/01431161.2016.1249308
  • Isaac-Medina, B. K., Poyser, M., Organisciak, D., Willcocks, C. G., Breckon, T. P., & Shum, H. P. (2021). Unmanned aerial vehicle visual detection and tracking using deep neural networks: A performance benchmark. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 1223-1232.
  • Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2012). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 25-31. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011
  • Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education.
  • Mikhail, E. M., Bethel, J. S., & McGlone, J. C. (2001). Introduction to modern photogrammetry. John Wiley & Sons.
  • Cramer, M., Stallmann, D., & Haala, N. (2000). Direct georeferencing using GPS/inertial exterior orientations for photogrammetric applications. International Archives of Photogrammetry and Remote Sensing, 33(B3/1; PART 3), 198-205.
  • Syetiawan, A., Gularso, H., Kusnadi, G. I., & Pramudita, G. N. (2020). Precise topographic mapping using direct georeferencing in UAV. In IOP Conference Series: Earth and Environmental Science, 500(1), 012029. https://doi.org/10.1088/1755-1315/500/1/012029
  • Chi, Y. Y., Lee, Y. F., & Tsai, S. E. (2016). Study on high accuracy topographic mapping via UAV-based images. In IOP Conference Series: Earth and Environmental Science, 44(3), 032006. https://doi.org/10.1088/1755-1315/44/3/032006
  • Awasthi, B., Karki, S., Regmi, P., Dhami, D. S., Thapa, S., & Panday, U. S. (2020). Analyzing the effect of distribution pattern and number of GCPs on overall accuracy of UAV photogrammetric results. In Proceedings of UASG 2019: Unmanned Aerial System in Geomatics, 1, 339-354. https://doi.org/10.1007/978-3-030-37393-1_29
  • Pix4D S. A., (2017). User manual Pix4Dmapper 4.1, 305p.
  • ASPRS (2014). ASPRS positional accuracy standards for digital geospatial data. Photogrammetric Engineering & Remote Sensing, 81(3), A1-A26. https://doi.org/10.14358/PERS.81.3.A1-A26
  • Chudal, K. K., Lamsal, P., & Oli, P. P. (2020). Drone based urban planning in Nepal. FIG Working Week.
  • Barry, P., & Coakley, R. (2013). Accuracy of UAV photogrammetry compared with network RTK GPS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 2731.
  • Udin, W. S., & Ahmad, A. (2014). Assessment of photogrammetric mapping accuracy based on variation flying altitude using unmanned aerial vehicle. In IOP conference series: Earth and Environmental Science, 18(1), 012027. https://doi.org/10.1088/1755-1315/18/1/012027
  • ASPRS (2013). ASPRS accuracy standards for digital geospatial data. Photogrammetric Engineering & Remote Sensing, 1073-1085
There are 20 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Sagar Pathak 0000-0001-9354-5605

Samrat Acharya This is me 0009-0007-7924-409X

Saugat Bk 0009-0007-6544-009X

Gaurab Karn This is me 0009-0006-5771-3169

Ujjowl Thapa This is me 0009-0003-9392-8579

Early Pub Date March 16, 2024
Publication Date June 15, 2024
Published in Issue Year 2024

Cite

APA Pathak, S., Acharya, S., Bk, S., Karn, G., et al. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1-8. https://doi.org/10.53093/mephoj.1350426
AMA Pathak S, Acharya S, Bk S, Karn G, Thapa U. UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal. June 2024;6(1):1-8. doi:10.53093/mephoj.1350426
Chicago Pathak, Sagar, Samrat Acharya, Saugat Bk, Gaurab Karn, and Ujjowl Thapa. “UAV-Based Topographical Mapping and Accuracy Assessment of Orthophoto Using GCP”. Mersin Photogrammetry Journal 6, no. 1 (June 2024): 1-8. https://doi.org/10.53093/mephoj.1350426.
EndNote Pathak S, Acharya S, Bk S, Karn G, Thapa U (June 1, 2024) UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal 6 1 1–8.
IEEE S. Pathak, S. Acharya, S. Bk, G. Karn, and U. Thapa, “UAV-based topographical mapping and accuracy assessment of orthophoto using GCP”, Mersin Photogrammetry Journal, vol. 6, no. 1, pp. 1–8, 2024, doi: 10.53093/mephoj.1350426.
ISNAD Pathak, Sagar et al. “UAV-Based Topographical Mapping and Accuracy Assessment of Orthophoto Using GCP”. Mersin Photogrammetry Journal 6/1 (June 2024), 1-8. https://doi.org/10.53093/mephoj.1350426.
JAMA Pathak S, Acharya S, Bk S, Karn G, Thapa U. UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal. 2024;6:1–8.
MLA Pathak, Sagar et al. “UAV-Based Topographical Mapping and Accuracy Assessment of Orthophoto Using GCP”. Mersin Photogrammetry Journal, vol. 6, no. 1, 2024, pp. 1-8, doi:10.53093/mephoj.1350426.
Vancouver Pathak S, Acharya S, Bk S, Karn G, Thapa U. UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal. 2024;6(1):1-8.