Research Article
BibTex RIS Cite

Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring

Year 2025, Volume: 7 Issue: 1, 37 - 42, 30.06.2025
https://doi.org/10.53093/mephoj.1499133

Abstract

Modern UAS or drones are quickly advancing when it comes to the collection of high-resolution images which are georeferenced and can be used to create a high resolution 3-D model of complex topography. Researchers in the field are making quick progress with new algorithms and analytical applications. These drones are being used in the field of volcanology in quite a useful manner as active volcano craters are one of the more challenging and complex areas to access. UAS have now assisted several departments of Universidad Nacional with data collection, analytics and optimization practices. In May of 2023 with the assistance of the Atmospheric Chemistry Laboratory of Universidad Nacional LAQAT-UNA and the Volcanic and Seismic Observatory of Costa Rica OVSICORI-UNA showed that our efforts using UAS at active volcanoes was greatly beneficial and the collective efforts proved the usefulness of deploying UAS around active degassing volcanoes such as the Turrialba Volcano in Costa Rica. Researchers in several departments at Universidad Nacional are keen on collaborating with others in international institutions for data fusion and synergy, to work together on gathering information on how to create better UAS hardware and payload components, and to cooperate for a better understanding of user needs, regulations and requirements for the safe operation of UAS. UAS allow for collection of accurate images which keep the researchers and remote pilots safe and out of the danger zone. UAS assist with the rapid accumulation of data, they can be pre- programmed for a specific type of UAS flight mission designed for a certain objective of gathering images for complex terrain or topography. The system can be used around active volcano craters, it can monitor mountains and cliffs subject to cracking, erosion and rock falls. Different extreme and complex environments can be documented and digitalized using this same method such as glacier zones and other sophisticated regions with difficult to access areas. All remote flights were using the SINAC Special Use UAS Research Permit – SINAC-ACC-PI-LC-037-2021

References

  • Mohammed, O., & Yakar, M. (2016). Yersel fotogrametrik yöntem ile ibadethanelerin modellenmesi. Selcuk University Journal of Engineering Sciences, 15(2), 85-95.
  • Kanun, E., Alptekin, A., Karataş, L., & Yakar, M. (2022). The use of UAV photogrammetry in modeling ancient structures: A case study of “Kanytellis”. Advanced UAV, 2(2), 41-50.
  • O. Villi & M. Yakar. Sensor technologies in unmanned aerial vehicles: types and applications. Advanced UAV, 4 ( 1 ), 1–18. 2024
  • Şasi, A., & Yakar, M. (2017). Photogrammetric modelling of sakahane masjid using an unmanned aerial vehicle. Turkish Journal of Engineering, 1(2), 82-87.
  • Şasi, A., & Yakar, M. (2018). Photogrammetric modelling of hasbey dar'ülhuffaz (masjid) using an unmanned aerial vehicle. International journal of engineering and geosciences, 3(1), 6-11.
  • Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı fotogrametrik rölöve alımı ve üç boyutlu modelleme çalışması. Geomatik, 2(1), 11-17.
  • Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı fotogrametrik rölöve alımı ve üç boyutlu modelleme çalışması. Geomatik, 2(1), 11-17.
  • Villi, O., & Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100.
  • Yakar, M., & Villi, O. (2023). İnsansız Hava Aracı Uygulama Alanları. Mersin Üniversitesi Harita Mühendisliği Kitapları.
  • Villi, O., & Yakar, M. (2024). Sensor technologies in unmanned aerial vehicles: types and applications. Advanced UAV, 4(1), 1-18.
  • Kucharczyk, Maja, and Chris H. Hugenholtz. "Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities." Remote Sensing of Environment 264 (2021): 112577
  • Harvey, Mark. "Geothermal Field Work Using a Drone with Thermal Camera: Aerial Photos, Digital Elevation Models and Heat Flow." Geothermal Resources Council Transactions (2016).
  • Zorn, Edgar U., et al. "UAS-based tracking of the Santiaguito Lava Dome, Guatemala." Scientific Reports 10.1 (2020): 8644.
  • Costa, Fidel, et al. "WOVOdat–the global volcano unrest database aimed at improving eruption forecasts." Disaster Prevention and Management: An International Journal 28.6 (2019): 738-751.
  • Bravo-Mosquera, Pedro David, et al. "Aerodynamic design analysis of a UAV for superficial research of volcanic environments." Aerospace Science and Technology 70 (2017): 600-614.
  • Manfreda, Salvatore, et al. "On the use of unmanned aerial systems for environmental monitoring." Remote sensing 10.4 (2018): 641.
  • Gomez, Christopher, and Heather Purdie. "UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring–a review." Geoenvironmental Disasters 3 (2016): 1-11.
  • Tarigan, A. P. M., et al. "Mapping a volcano hazard area of Mount Sinabung using drone: preliminary results." IOP Conference Series: Materials Science and Engineering. Vol. 180. No. 1. IOP Publishing, 2017.
  • James, Mike R., et al. "Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges." Volcanica 3.1 (2020): 67-114.
  • Calvari, Sonia, and Giuseppe Nunnari. "Comparison between automated and manual detection of lava fountains from fixed monitoring thermal cameras at Etna Volcano, Italy." Remote Sensing 14.10 (2022): 2392.
  • Yakar, M., Orhan, O., Ulvi, A., Yiğit, A. Y., & Yüzer, M. M. (2015). Sahip Ata Külliyesi Rölöve Örneği. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Yakar, M., Yılmaz, H. M., Güleç, S. A., & Korumaz, M. (2009). Advantage of digital close range photogrammetry in drawing of muqarnas in architecture. Information Technology Journal, 8(2), 202-207.
Year 2025, Volume: 7 Issue: 1, 37 - 42, 30.06.2025
https://doi.org/10.53093/mephoj.1499133

Abstract

References

  • Mohammed, O., & Yakar, M. (2016). Yersel fotogrametrik yöntem ile ibadethanelerin modellenmesi. Selcuk University Journal of Engineering Sciences, 15(2), 85-95.
  • Kanun, E., Alptekin, A., Karataş, L., & Yakar, M. (2022). The use of UAV photogrammetry in modeling ancient structures: A case study of “Kanytellis”. Advanced UAV, 2(2), 41-50.
  • O. Villi & M. Yakar. Sensor technologies in unmanned aerial vehicles: types and applications. Advanced UAV, 4 ( 1 ), 1–18. 2024
  • Şasi, A., & Yakar, M. (2017). Photogrammetric modelling of sakahane masjid using an unmanned aerial vehicle. Turkish Journal of Engineering, 1(2), 82-87.
  • Şasi, A., & Yakar, M. (2018). Photogrammetric modelling of hasbey dar'ülhuffaz (masjid) using an unmanned aerial vehicle. International journal of engineering and geosciences, 3(1), 6-11.
  • Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı fotogrametrik rölöve alımı ve üç boyutlu modelleme çalışması. Geomatik, 2(1), 11-17.
  • Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı fotogrametrik rölöve alımı ve üç boyutlu modelleme çalışması. Geomatik, 2(1), 11-17.
  • Villi, O., & Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100.
  • Yakar, M., & Villi, O. (2023). İnsansız Hava Aracı Uygulama Alanları. Mersin Üniversitesi Harita Mühendisliği Kitapları.
  • Villi, O., & Yakar, M. (2024). Sensor technologies in unmanned aerial vehicles: types and applications. Advanced UAV, 4(1), 1-18.
  • Kucharczyk, Maja, and Chris H. Hugenholtz. "Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities." Remote Sensing of Environment 264 (2021): 112577
  • Harvey, Mark. "Geothermal Field Work Using a Drone with Thermal Camera: Aerial Photos, Digital Elevation Models and Heat Flow." Geothermal Resources Council Transactions (2016).
  • Zorn, Edgar U., et al. "UAS-based tracking of the Santiaguito Lava Dome, Guatemala." Scientific Reports 10.1 (2020): 8644.
  • Costa, Fidel, et al. "WOVOdat–the global volcano unrest database aimed at improving eruption forecasts." Disaster Prevention and Management: An International Journal 28.6 (2019): 738-751.
  • Bravo-Mosquera, Pedro David, et al. "Aerodynamic design analysis of a UAV for superficial research of volcanic environments." Aerospace Science and Technology 70 (2017): 600-614.
  • Manfreda, Salvatore, et al. "On the use of unmanned aerial systems for environmental monitoring." Remote sensing 10.4 (2018): 641.
  • Gomez, Christopher, and Heather Purdie. "UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring–a review." Geoenvironmental Disasters 3 (2016): 1-11.
  • Tarigan, A. P. M., et al. "Mapping a volcano hazard area of Mount Sinabung using drone: preliminary results." IOP Conference Series: Materials Science and Engineering. Vol. 180. No. 1. IOP Publishing, 2017.
  • James, Mike R., et al. "Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges." Volcanica 3.1 (2020): 67-114.
  • Calvari, Sonia, and Giuseppe Nunnari. "Comparison between automated and manual detection of lava fountains from fixed monitoring thermal cameras at Etna Volcano, Italy." Remote Sensing 14.10 (2022): 2392.
  • Yakar, M., Orhan, O., Ulvi, A., Yiğit, A. Y., & Yüzer, M. M. (2015). Sahip Ata Külliyesi Rölöve Örneği. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Yakar, M., Yılmaz, H. M., Güleç, S. A., & Korumaz, M. (2009). Advantage of digital close range photogrammetry in drawing of muqarnas in architecture. Information Technology Journal, 8(2), 202-207.
There are 23 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Ian Godfrey 0000-0003-0700-8307

José Pablo Sibaja Brenes This is me

Geoffroy Avard This is me

Maria Martinez Cruz

Khadija Meghraouı

Early Pub Date July 1, 2025
Publication Date June 30, 2025
Submission Date June 11, 2024
Acceptance Date June 19, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Godfrey, I., Brenes, J. P. S., Avard, G., Cruz, M. M., et al. (2025). Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring. Mersin Photogrammetry Journal, 7(1), 37-42. https://doi.org/10.53093/mephoj.1499133
AMA Godfrey I, Brenes JPS, Avard G, Cruz MM, Meghraouı K. Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring. MEPHOJ. June 2025;7(1):37-42. doi:10.53093/mephoj.1499133
Chicago Godfrey, Ian, José Pablo Sibaja Brenes, Geoffroy Avard, Maria Martinez Cruz, and Khadija Meghraouı. “Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring”. Mersin Photogrammetry Journal 7, no. 1 (June 2025): 37-42. https://doi.org/10.53093/mephoj.1499133.
EndNote Godfrey I, Brenes JPS, Avard G, Cruz MM, Meghraouı K (June 1, 2025) Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring. Mersin Photogrammetry Journal 7 1 37–42.
IEEE I. Godfrey, J. P. S. Brenes, G. Avard, M. M. Cruz, and K. Meghraouı, “Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring”, MEPHOJ, vol. 7, no. 1, pp. 37–42, 2025, doi: 10.53093/mephoj.1499133.
ISNAD Godfrey, Ian et al. “Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring”. Mersin Photogrammetry Journal 7/1 (June 2025), 37-42. https://doi.org/10.53093/mephoj.1499133.
JAMA Godfrey I, Brenes JPS, Avard G, Cruz MM, Meghraouı K. Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring. MEPHOJ. 2025;7:37–42.
MLA Godfrey, Ian et al. “Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring”. Mersin Photogrammetry Journal, vol. 7, no. 1, 2025, pp. 37-42, doi:10.53093/mephoj.1499133.
Vancouver Godfrey I, Brenes JPS, Avard G, Cruz MM, Meghraouı K. Deploying UAS Directly Inside the Active Crater of Turrialba for Photogrammetry Data Collection Designed for Active Volcano Monitoring. MEPHOJ. 2025;7(1):37-42.