Research Article
BibTex RIS Cite
Year 2025, Volume: 7 Issue: 1, 22 - 28, 30.06.2025
https://doi.org/10.53093/mephoj.1628742

Abstract

References

  • UNESCO. (2021). The United Nations world water development report 2021: Valuing water. United Nations Educational, Scientific and Cultural Organization. https://unesdoc.unesco.org/ark:/48223/pf0000375724
  • Duran-Encalada, J. A., Paucar-Caceres, A., Bandala, E. R., & Wright, G. H. (2017). The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. European Journal of Operational Research, 256(2), 567–581. https://doi.org/10.1016/j.ejor.2016.06.016
  • Ahady, A. B., & Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences, 7(1), 24 – 31. https://doi.org/10.26833/ijeg.860077
  • Kanber, R., Baştuğ, R., Büyüktaş, D., Ünlü, M., & Kapur, B. (2010, January 11–15). Küresel iklim değişikliğinin su kaynakları ve tarımsal sulamaya etkileri. In TMMOB Ziraat Mühendisleri Odası (Ed.), Ziraat Mühendisliği VII. Teknik Kongresi: Bildiriler kitabı (pp. 83–118). Ankara, Turkey.
  • Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An Automated Method for Extracting Rivers and Lakes from Landsat Imagery. Remote Sensing, 6(6), 5067–5089. https://doi.org/10.3390/rs6065067
  • Tang, H., Lu, S., Ali Baig, M. H., Li, M., Fang, C., & Wang, Y. (2022). Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water, 14(9), 1454. https://doi.org/10.3390/w14091454
  • Yağmur, N., Tanık, A., Tuzcu, A., Musaoğlu N., Erten E., & Bilgilioglu, B. (2020). Opportunities provided by remote sensing data for watershed management: example of Konya Closed Basin. International Journal of Engineering and Geosciences, 5(3), 120 – 129. https://doi.org/10.26833/ijeg.638669
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Xu, H. (2006). Modification of Normalized Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029
  • Sabuncu, A. (2020). Burdur Gölü Kıyı Şeridindeki Değişiminin Uzaktan Algılama ile Haritalanması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4), 623–633. https://doi.org/10.35414/akufemubid.711653
  • Khalid, H. W., Khalil, R. M. Z., & Qureshi, M. A. (2021). Evaluating spectral indices for water bodies extraction in western Tibetan Plateau. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 619–634. https://doi.org/10.1016/j.ejrs.2021.09.003
  • Kılınçarslan, E., Gencal, B., & Taş, İ. (2024). Assessing Two Decades of Land Use/Land Cover Changes in the Uluabat Lake Ramsar Site using Multi-Temporal Satellite Imagery. European Journal of Forest Engineering, 10(2), 100–111. https://doi.org/10.33904/ejfe.1318353
  • El-Bouhali, A., Amyay, M., & El Ouazanı Ech- Chahdi, K. (2024). Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. International Journal of Engineering and Geosciences, 9(2), 221 – 232. https://doi.org/10.26833/ijeg.1391957
  • Zhao, C., Wei, H., Feyisa, G. L., de Castro Tayer, T., Ma, G., Wu, H., & Pan, Y. (2025). Evaluating spectral indices for water extraction: Limitations and contextual usage recommendations. International Journal of Applied Earth Observation and Geoinformation, 139, 104510. https://doi.org/10.1016/j.jag.2025.104510
  • Davraz, A., Sener, E., & Sener, S. (2019). Evaluation of climate and human effects on the hydrology and water quality of Burdur Lake, Turkey. Journal of African Earth Sciences, 158, 103569. https://doi.org/10.1016/j.jafrearsci.2019.103569
  • Ataol, M. (2010). Burdur Gölü'nde Seviye Değişimleri. Coğrafi Bilimler Dergisi, 8(1), 77–92. https://doi.org/10.1501/Cogbil_0000000105
  • Kaya, L. G., Yücedağ, C., & Duruşkan, Ö. (2015). Burdur Gölü havzasının çevresel açıdan irdelenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 6–10. https://doi.org/10.29048/makufebed.206586
  • ATAOL, M. (2010). Burdur Gölü’nde Seviye Değişimleri. Co, 077–092. https://doi.org/10.1501/cogbil_0000000105
  • Abujayyab, S. K. M., Almotairi, K. H., Alswaitti, M., Amr, S. S. A., Alkarkhi, A. F. M., Taşoğlu, E., & Hussein, A. M. (2021). Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series. Land, 10(12), 1301. https://doi.org/10.3390/land10121301

Temporal Dynamics of Lake Burdur's Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts

Year 2025, Volume: 7 Issue: 1, 22 - 28, 30.06.2025
https://doi.org/10.53093/mephoj.1628742

Abstract

Global warming, climate change, increasing population and industrialization cause spatial and temporal changes in surface water resources. Lake Burdur, located in Turkey’s Lakes Region, is a tectonic closed basin lake that has experienced significant reductions in water surface area and volume. In this study, the changes in the water surface area of Lake Burdur between 2003 and 2023 were analyzed using Google Earth Engine. Based on the obtained data the estimated water surface area values of Lake Burdur for years 2028 and 2033 were calculated. Within the scope of the study, Landsat 5 satellite images were used for the years 2003 and 2008, while Landsat 8 satellite images were utilized for the years 2013, 2018, 2023 and 2024. To calculate the water surface area values of Lake Burdur for the specified years, the Normalized Difference Water Index (NDWI) and the Automated Water Extraction Index for Shadow (AWEIsh) methods were utilized. In the study the data obtained from both methods on an annual basis were compared, and percentage difference values were calculated. Trend line functions were generated using the water surface area data obtained for the specified years to calculate future estimated values, and the accuracy of these functions was tested using the 2024 data. The findings after 2016 were also cross-verified and examined using Sentinel-2 data. The results indicate that the water surface area loss rate of Lake Burdur during the 20 year period between 2003 and 2023 was 22.82% according to the analysis conducted using NDWI, and this rate could increase to 34.56% by 2033. According to the analysis conducted using AWEIsh, the water surface area loss rate of the lake during the same period was calculated as 22.41% and it is estimated that this loss could reach 33.85% by 2033.

Ethical Statement

The authors declare no conflict of interest.

References

  • UNESCO. (2021). The United Nations world water development report 2021: Valuing water. United Nations Educational, Scientific and Cultural Organization. https://unesdoc.unesco.org/ark:/48223/pf0000375724
  • Duran-Encalada, J. A., Paucar-Caceres, A., Bandala, E. R., & Wright, G. H. (2017). The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. European Journal of Operational Research, 256(2), 567–581. https://doi.org/10.1016/j.ejor.2016.06.016
  • Ahady, A. B., & Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences, 7(1), 24 – 31. https://doi.org/10.26833/ijeg.860077
  • Kanber, R., Baştuğ, R., Büyüktaş, D., Ünlü, M., & Kapur, B. (2010, January 11–15). Küresel iklim değişikliğinin su kaynakları ve tarımsal sulamaya etkileri. In TMMOB Ziraat Mühendisleri Odası (Ed.), Ziraat Mühendisliği VII. Teknik Kongresi: Bildiriler kitabı (pp. 83–118). Ankara, Turkey.
  • Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An Automated Method for Extracting Rivers and Lakes from Landsat Imagery. Remote Sensing, 6(6), 5067–5089. https://doi.org/10.3390/rs6065067
  • Tang, H., Lu, S., Ali Baig, M. H., Li, M., Fang, C., & Wang, Y. (2022). Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water, 14(9), 1454. https://doi.org/10.3390/w14091454
  • Yağmur, N., Tanık, A., Tuzcu, A., Musaoğlu N., Erten E., & Bilgilioglu, B. (2020). Opportunities provided by remote sensing data for watershed management: example of Konya Closed Basin. International Journal of Engineering and Geosciences, 5(3), 120 – 129. https://doi.org/10.26833/ijeg.638669
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Xu, H. (2006). Modification of Normalized Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029
  • Sabuncu, A. (2020). Burdur Gölü Kıyı Şeridindeki Değişiminin Uzaktan Algılama ile Haritalanması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4), 623–633. https://doi.org/10.35414/akufemubid.711653
  • Khalid, H. W., Khalil, R. M. Z., & Qureshi, M. A. (2021). Evaluating spectral indices for water bodies extraction in western Tibetan Plateau. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 619–634. https://doi.org/10.1016/j.ejrs.2021.09.003
  • Kılınçarslan, E., Gencal, B., & Taş, İ. (2024). Assessing Two Decades of Land Use/Land Cover Changes in the Uluabat Lake Ramsar Site using Multi-Temporal Satellite Imagery. European Journal of Forest Engineering, 10(2), 100–111. https://doi.org/10.33904/ejfe.1318353
  • El-Bouhali, A., Amyay, M., & El Ouazanı Ech- Chahdi, K. (2024). Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. International Journal of Engineering and Geosciences, 9(2), 221 – 232. https://doi.org/10.26833/ijeg.1391957
  • Zhao, C., Wei, H., Feyisa, G. L., de Castro Tayer, T., Ma, G., Wu, H., & Pan, Y. (2025). Evaluating spectral indices for water extraction: Limitations and contextual usage recommendations. International Journal of Applied Earth Observation and Geoinformation, 139, 104510. https://doi.org/10.1016/j.jag.2025.104510
  • Davraz, A., Sener, E., & Sener, S. (2019). Evaluation of climate and human effects on the hydrology and water quality of Burdur Lake, Turkey. Journal of African Earth Sciences, 158, 103569. https://doi.org/10.1016/j.jafrearsci.2019.103569
  • Ataol, M. (2010). Burdur Gölü'nde Seviye Değişimleri. Coğrafi Bilimler Dergisi, 8(1), 77–92. https://doi.org/10.1501/Cogbil_0000000105
  • Kaya, L. G., Yücedağ, C., & Duruşkan, Ö. (2015). Burdur Gölü havzasının çevresel açıdan irdelenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 6–10. https://doi.org/10.29048/makufebed.206586
  • ATAOL, M. (2010). Burdur Gölü’nde Seviye Değişimleri. Co, 077–092. https://doi.org/10.1501/cogbil_0000000105
  • Abujayyab, S. K. M., Almotairi, K. H., Alswaitti, M., Amr, S. S. A., Alkarkhi, A. F. M., Taşoğlu, E., & Hussein, A. M. (2021). Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series. Land, 10(12), 1301. https://doi.org/10.3390/land10121301
There are 20 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Kemal Can Erdem 0009-0009-2821-3706

Tolga Bakırman 0000-0001-7828-9666

Bülent Bayram 0000-0002-4248-116X

Early Pub Date July 1, 2025
Publication Date June 30, 2025
Submission Date January 28, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Erdem, K. C., Bakırman, T., & Bayram, B. (2025). Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts. Mersin Photogrammetry Journal, 7(1), 22-28. https://doi.org/10.53093/mephoj.1628742
AMA Erdem KC, Bakırman T, Bayram B. Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts. MEPHOJ. June 2025;7(1):22-28. doi:10.53093/mephoj.1628742
Chicago Erdem, Kemal Can, Tolga Bakırman, and Bülent Bayram. “Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts”. Mersin Photogrammetry Journal 7, no. 1 (June 2025): 22-28. https://doi.org/10.53093/mephoj.1628742.
EndNote Erdem KC, Bakırman T, Bayram B (June 1, 2025) Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts. Mersin Photogrammetry Journal 7 1 22–28.
IEEE K. C. Erdem, T. Bakırman, and B. Bayram, “Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts”, MEPHOJ, vol. 7, no. 1, pp. 22–28, 2025, doi: 10.53093/mephoj.1628742.
ISNAD Erdem, Kemal Can et al. “Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts”. Mersin Photogrammetry Journal 7/1 (June 2025), 22-28. https://doi.org/10.53093/mephoj.1628742.
JAMA Erdem KC, Bakırman T, Bayram B. Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts. MEPHOJ. 2025;7:22–28.
MLA Erdem, Kemal Can et al. “Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts”. Mersin Photogrammetry Journal, vol. 7, no. 1, 2025, pp. 22-28, doi:10.53093/mephoj.1628742.
Vancouver Erdem KC, Bakırman T, Bayram B. Temporal Dynamics of Lake Burdur’s Water Surface Area: A Two-Decade Remote Sensing Analysis and Future Forecasts. MEPHOJ. 2025;7(1):22-8.