Research Article
BibTex RIS Cite
Year 2022, Volume: 4 Issue: 2, 12 - 17, 31.12.2022
https://doi.org/10.47512/meujmaf.1113213

Abstract

References

  • Acciaro, M., Ghiara, H., & Cusano, M.I. (2014). Energy management in seaports: A new role for port authorities, Energy Policy, 71, 4-12. https://doi.org/10.1016/j.enpol.2014.04.013
  • Alamoush, A.S., Ballini, F., & Olçer, A.I. (2020). Ports' technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review, Marine Pollution Bulletin, 160. https://doi.org/10.1016/j.marpolbul.2020.111508
  • Alamoush, A.S., Olçer, A.I., & Ballini, F. (2022). Ports’ role in shipping decarbonization: A common port incentive scheme for shipping greenhouse gas emissions reduction, Cleaner Logistics, and Supply Chain, https://doi.org/10.1016/j.clscn.2021.100021.
  • Aregall, M. G., Bergqvist, R., & Monios, J. (2018). A global review of the hinterland dimension of green port strategies. Transportation Research Part D: Transport and Environment, 59, 23-34. https://doi.org/10.1016/j.trd.2017.12.013
  • Ballini, F., & Bozzo, R. (2015). Air pollution from ships in ports: The socio-economic benefit of cold-ironing technology, Research in Transportation Business & Management, http://dx.doi.org/10.1016/j.rtbm.2015.10.007
  • Chen, j., Zheng, T., Garg, A., Xu, L., Li, S., & Fei, Y. (2019). Alternative Maritime Power application as a green port strategy: Barriers in China, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2018.12.177.
  • Cullinane, K., & Bergqvist, R. (2014). Emission control areas and their impact on maritime transport. Transportation Research Part D: Transport and Environment, 28, 1-5. https://doi.org/10.1016/j.trd.2013.12.004
  • Daniel, H., Trovao, J.P.F., & Williams, D. (2022). Shore power as the first step toward shipping decarbonization and related policy impact on a dry bulk cargo carrier, eTransportation, https://doi.org/10.1016/j.etran.2021.100150
  • Demir, E. (2021). Yeşil Liman Kriterlerinin AHS Metodu ile Analiz Edilerek Liman Performans Değerlendirilmesinin Yapılması (Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.
  • Demir, E., & Arslan, Ö. (2021). Çevreci Yapılanma Bağlamında Yeşil Liman Ölçütleri, V. Ulusal / I. Uluslararası Liman Kongresi, Pandemi döneminde limanlar: Belirsizliği yönetmek, 4-5 Kasım 2021 İzmir, ISBN: 978-975-441-551-3.
  • Deniz, C., and B. Zincir. (2016). Environmental and Economical Assessment of Alternative Marine Fuels, Journal of Cleaner Production. doi:10.1016/j.jclepro.2015.11.089.
  • Elüstün, H.G. (2021). Hidrojen Enerjisi. Sürdürülebilir Kalkınma, yeşil Büyüme. İzmir Development Agency. Accessed at: 11.07.2022. kalkinmaguncesi.izka.org.tr/index.php/2021/04/09/hidrojen-enerjisi.
  • ESPO (2019). European Sea Ports Organization. Environmental Report 2019. EcoPortsinSights 2019.
  • Fransen, R.W., & Davydenko, I.Y. (2021). Empirical agent-based model simulation for the port nautical services: A case study for the Port of Rotterdam, Maritime Transport Research, https://doi.org/10.1016/j.martra.2021.100040.
  • IMO, (2021). Fourth IMO GHG Study. International Maritime Organisation (IMO). Published in 2021 by the International Maritime Organization 4 Albert Embankment, London SE1 7SR www.imo.org.
  • IMO, (2022). Draft MEPC Resolution, Protecting the Arctic from Shipping Black Carbon Emissions. IMO moves ahead on GHG emissions, Black Carbon, and marine littering. Black carbon in the Arctic - resolution adopted. MEPC 77/J/9. imo.org/en/MediaCentre/PressBriefings/pages/MEPC77.aspx.
  • IPCC, (2012). Renewable Energy Sources and Climate Change Mitigation, Special Report of the Intergovernmental Panel on Climate Change, 2012.
  • Johnson, B. T., Shine, K. P., Forster, P. M., (2004). The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130(599), 1407-1422. https://doi.org/10.1256/qj.03.61.
  • Lam, Y. S. L., Ko, M. J., Sim, J.R., & Tee, Y. (2017). Feasibility of Implementing Energy Management System in Ports, 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).2017.
  • Li, X., Xiao, Q., Luo, Y., Moretti, G., Fontana, M., Righi, M. (2021) Dynamic response of a novel flexible wave energy converter under regular waves, Proceedings of the 14th European Wave and Tidal Energy Conference 5-9th Sept 2021, Plymouth, UK
  • Ministry of Energy and Natural Resources, (2022a). Yenilenebilir Enerji: Kaynaklar: Güneş. Accessed at: 11.07.2022. enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-gunes.
  • Ministry of Energy and Natural Resources, (2022b). Yenilenebilir Enerji: Kaynaklar: Rüzgar. Accessed at: 11.07.2022. enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-ruzgar.
  • Pavlic, B., Cepak, F., Sucic, B., Peckaj, M., & Kandus, B. (2014). Sustainable port infrastructure, practical implementation of the green port concept. Thermal Science, 18(3), 935-948.
  • Port of Rotterdam, (2022a). The port that will take you ahead: Unrivalled nautical infrastructure. Accessed at: 11.07.2022. portofrotterdam.com/en/why-rotterdam/port-will-take-you-ahead.
  • Port of Rotterdam, (2022b). Ongoing Projects: Pillar 2: a new energy system. Accessed at: 11.07.2022. portofrotterdam.com/en/port-future/energy-transition/ongoing-projects.
  • Port of Antwerp, (2022). Climate and transition: Direct energy from renewable sources. Accessed at: 11.07.2022. portofantwerpbruges.com/en/our-port/climate-and-transition.
  • Satır, T., & Doğan-Sağlamtimur, N.D. (2018). The Protection of Marine Aquatic Life: Green Port (EcoPort) Model inspired by Green Port Concept in Selected Ports from Turkey, Europe, and the USA, Periodicals of Engineering and Natural Sciences, 6(1), 120-129, 2018, doi: 10.21533/pen.v6i1.149.
  • Seyhan, A., Ay, C., & Deniz, C. (2022). Evaluating the emission reduction efficiency of the automatic mooring system and cold ironing: the case of a port in Izmit Bay. Australian Journal of Maritime & Ocean Affairs, 1-19.
  • Sifakis, N., & Tsoutsos, T. (2021). Planning zero-emissions ports through the nearly zero energy port concept, Journal of Cleaner Production, 286, https://doi.org/10.1016/j.jclepro.2020.125448
  • Yorke, F.O., Owusu, J.J., & Atepor, L. (2022). Composite decision-making algorithms for optimization of hybrid renewable energy systems: Port of Takoradi as a case study, Energy Reports, https://doi.org/10.1016/j.egyr.2022.01.118
  • Yun, P.E.N.G., Xiangda, L.I., Wenyuan, W.A.N.G., Ke, L.I.U., & Chuan, L.I. (2018). Simulation-based research on carbon emission mitigation strategies for green container terminals, Ocean Engineering, 163, 288-298. https://doi.org/10.1016/j.oceaneng.2018.05.054.

ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK

Year 2022, Volume: 4 Issue: 2, 12 - 17, 31.12.2022
https://doi.org/10.47512/meujmaf.1113213

Abstract

Ports can be defined as the main centers of maritime transportation and trade, which provide the continuity of international trade as well as provide loading and unloading services to ships. As a result of the globalizing world, the importance of ports has continued to increase day by day because trade can be made faster and more efficiently. The fact that the ports are located at such a critical point, the increasing transaction volume, and the development of environmentally sensitive systems bring along an inevitable process of change. At this point, with increasing awareness, the concept of a green port has been developed. Green port is an approach that aims to minimize the adverse effects on the environment and ecosystem. While the ports continue their activities to achieve this goal, it aims to use systems that use energy resources efficiently and effectively while meeting energy needs and having the most negligible impact on the ecosystem. The equipment that maintains port operations, port equipment, and ships berthing in the port are energy-consuming elements. This study aims to analyze the energy efficiency in ports from a green port perspective by using the literature review method. In this context, the energy efficiency practices of two of the leading ports in Europe were examined. As a result of the qualitative analysis, it has been determined that the studies of the ports for energy efficiency have reached a critical point, and an approach compatible with the green port principles has been exhibited.

References

  • Acciaro, M., Ghiara, H., & Cusano, M.I. (2014). Energy management in seaports: A new role for port authorities, Energy Policy, 71, 4-12. https://doi.org/10.1016/j.enpol.2014.04.013
  • Alamoush, A.S., Ballini, F., & Olçer, A.I. (2020). Ports' technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review, Marine Pollution Bulletin, 160. https://doi.org/10.1016/j.marpolbul.2020.111508
  • Alamoush, A.S., Olçer, A.I., & Ballini, F. (2022). Ports’ role in shipping decarbonization: A common port incentive scheme for shipping greenhouse gas emissions reduction, Cleaner Logistics, and Supply Chain, https://doi.org/10.1016/j.clscn.2021.100021.
  • Aregall, M. G., Bergqvist, R., & Monios, J. (2018). A global review of the hinterland dimension of green port strategies. Transportation Research Part D: Transport and Environment, 59, 23-34. https://doi.org/10.1016/j.trd.2017.12.013
  • Ballini, F., & Bozzo, R. (2015). Air pollution from ships in ports: The socio-economic benefit of cold-ironing technology, Research in Transportation Business & Management, http://dx.doi.org/10.1016/j.rtbm.2015.10.007
  • Chen, j., Zheng, T., Garg, A., Xu, L., Li, S., & Fei, Y. (2019). Alternative Maritime Power application as a green port strategy: Barriers in China, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2018.12.177.
  • Cullinane, K., & Bergqvist, R. (2014). Emission control areas and their impact on maritime transport. Transportation Research Part D: Transport and Environment, 28, 1-5. https://doi.org/10.1016/j.trd.2013.12.004
  • Daniel, H., Trovao, J.P.F., & Williams, D. (2022). Shore power as the first step toward shipping decarbonization and related policy impact on a dry bulk cargo carrier, eTransportation, https://doi.org/10.1016/j.etran.2021.100150
  • Demir, E. (2021). Yeşil Liman Kriterlerinin AHS Metodu ile Analiz Edilerek Liman Performans Değerlendirilmesinin Yapılması (Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.
  • Demir, E., & Arslan, Ö. (2021). Çevreci Yapılanma Bağlamında Yeşil Liman Ölçütleri, V. Ulusal / I. Uluslararası Liman Kongresi, Pandemi döneminde limanlar: Belirsizliği yönetmek, 4-5 Kasım 2021 İzmir, ISBN: 978-975-441-551-3.
  • Deniz, C., and B. Zincir. (2016). Environmental and Economical Assessment of Alternative Marine Fuels, Journal of Cleaner Production. doi:10.1016/j.jclepro.2015.11.089.
  • Elüstün, H.G. (2021). Hidrojen Enerjisi. Sürdürülebilir Kalkınma, yeşil Büyüme. İzmir Development Agency. Accessed at: 11.07.2022. kalkinmaguncesi.izka.org.tr/index.php/2021/04/09/hidrojen-enerjisi.
  • ESPO (2019). European Sea Ports Organization. Environmental Report 2019. EcoPortsinSights 2019.
  • Fransen, R.W., & Davydenko, I.Y. (2021). Empirical agent-based model simulation for the port nautical services: A case study for the Port of Rotterdam, Maritime Transport Research, https://doi.org/10.1016/j.martra.2021.100040.
  • IMO, (2021). Fourth IMO GHG Study. International Maritime Organisation (IMO). Published in 2021 by the International Maritime Organization 4 Albert Embankment, London SE1 7SR www.imo.org.
  • IMO, (2022). Draft MEPC Resolution, Protecting the Arctic from Shipping Black Carbon Emissions. IMO moves ahead on GHG emissions, Black Carbon, and marine littering. Black carbon in the Arctic - resolution adopted. MEPC 77/J/9. imo.org/en/MediaCentre/PressBriefings/pages/MEPC77.aspx.
  • IPCC, (2012). Renewable Energy Sources and Climate Change Mitigation, Special Report of the Intergovernmental Panel on Climate Change, 2012.
  • Johnson, B. T., Shine, K. P., Forster, P. M., (2004). The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130(599), 1407-1422. https://doi.org/10.1256/qj.03.61.
  • Lam, Y. S. L., Ko, M. J., Sim, J.R., & Tee, Y. (2017). Feasibility of Implementing Energy Management System in Ports, 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).2017.
  • Li, X., Xiao, Q., Luo, Y., Moretti, G., Fontana, M., Righi, M. (2021) Dynamic response of a novel flexible wave energy converter under regular waves, Proceedings of the 14th European Wave and Tidal Energy Conference 5-9th Sept 2021, Plymouth, UK
  • Ministry of Energy and Natural Resources, (2022a). Yenilenebilir Enerji: Kaynaklar: Güneş. Accessed at: 11.07.2022. enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-gunes.
  • Ministry of Energy and Natural Resources, (2022b). Yenilenebilir Enerji: Kaynaklar: Rüzgar. Accessed at: 11.07.2022. enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-ruzgar.
  • Pavlic, B., Cepak, F., Sucic, B., Peckaj, M., & Kandus, B. (2014). Sustainable port infrastructure, practical implementation of the green port concept. Thermal Science, 18(3), 935-948.
  • Port of Rotterdam, (2022a). The port that will take you ahead: Unrivalled nautical infrastructure. Accessed at: 11.07.2022. portofrotterdam.com/en/why-rotterdam/port-will-take-you-ahead.
  • Port of Rotterdam, (2022b). Ongoing Projects: Pillar 2: a new energy system. Accessed at: 11.07.2022. portofrotterdam.com/en/port-future/energy-transition/ongoing-projects.
  • Port of Antwerp, (2022). Climate and transition: Direct energy from renewable sources. Accessed at: 11.07.2022. portofantwerpbruges.com/en/our-port/climate-and-transition.
  • Satır, T., & Doğan-Sağlamtimur, N.D. (2018). The Protection of Marine Aquatic Life: Green Port (EcoPort) Model inspired by Green Port Concept in Selected Ports from Turkey, Europe, and the USA, Periodicals of Engineering and Natural Sciences, 6(1), 120-129, 2018, doi: 10.21533/pen.v6i1.149.
  • Seyhan, A., Ay, C., & Deniz, C. (2022). Evaluating the emission reduction efficiency of the automatic mooring system and cold ironing: the case of a port in Izmit Bay. Australian Journal of Maritime & Ocean Affairs, 1-19.
  • Sifakis, N., & Tsoutsos, T. (2021). Planning zero-emissions ports through the nearly zero energy port concept, Journal of Cleaner Production, 286, https://doi.org/10.1016/j.jclepro.2020.125448
  • Yorke, F.O., Owusu, J.J., & Atepor, L. (2022). Composite decision-making algorithms for optimization of hybrid renewable energy systems: Port of Takoradi as a case study, Energy Reports, https://doi.org/10.1016/j.egyr.2022.01.118
  • Yun, P.E.N.G., Xiangda, L.I., Wenyuan, W.A.N.G., Ke, L.I.U., & Chuan, L.I. (2018). Simulation-based research on carbon emission mitigation strategies for green container terminals, Ocean Engineering, 163, 288-298. https://doi.org/10.1016/j.oceaneng.2018.05.054.
There are 31 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Research Articles
Authors

Elif Demir 0000-0002-1814-7436

Tanzer Satır 0000-0002-5308-5680

Neslihan Sağlamtimur 0000-0001-6287-6268

Ufuk Yakup Çalışkan 0000-0001-8107-7197

Early Pub Date December 30, 2022
Publication Date December 31, 2022
Submission Date May 6, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Demir, E., Satır, T., Sağlamtimur, N., Çalışkan, U. Y. (2022). ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK. Mersin University Journal of Maritime Faculty, 4(2), 12-17. https://doi.org/10.47512/meujmaf.1113213
AMA Demir E, Satır T, Sağlamtimur N, Çalışkan UY. ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK. MEUJMAF. December 2022;4(2):12-17. doi:10.47512/meujmaf.1113213
Chicago Demir, Elif, Tanzer Satır, Neslihan Sağlamtimur, and Ufuk Yakup Çalışkan. “ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK”. Mersin University Journal of Maritime Faculty 4, no. 2 (December 2022): 12-17. https://doi.org/10.47512/meujmaf.1113213.
EndNote Demir E, Satır T, Sağlamtimur N, Çalışkan UY (December 1, 2022) ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK. Mersin University Journal of Maritime Faculty 4 2 12–17.
IEEE E. Demir, T. Satır, N. Sağlamtimur, and U. Y. Çalışkan, “ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK”, MEUJMAF, vol. 4, no. 2, pp. 12–17, 2022, doi: 10.47512/meujmaf.1113213.
ISNAD Demir, Elif et al. “ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK”. Mersin University Journal of Maritime Faculty 4/2 (December 2022), 12-17. https://doi.org/10.47512/meujmaf.1113213.
JAMA Demir E, Satır T, Sağlamtimur N, Çalışkan UY. ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK. MEUJMAF. 2022;4:12–17.
MLA Demir, Elif et al. “ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK”. Mersin University Journal of Maritime Faculty, vol. 4, no. 2, 2022, pp. 12-17, doi:10.47512/meujmaf.1113213.
Vancouver Demir E, Satır T, Sağlamtimur N, Çalışkan UY. ENERGY EFFICIENCY IN PORTS FROM A GREEN PORT PERSPECTIVE: A CONCEPTUAL FRAMEWORK. MEUJMAF. 2022;4(2):12-7.

download

Mersin University Journal of Maritime Faculty is licenced under a Creative Commons Attribution-ShareAlike 4.0 International License.