Review Article
BibTex RIS Cite
Year 2024, Volume: 6 Issue: 2, 27 - 34, 30.12.2024
https://doi.org/10.47512/meujmaf.1589195

Abstract

References

  • Asman, W. A., Sutton, M. A., & Schjørring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. The New Phytologist, 139(1), 27-48.
  • Al-Enazi, A., Okonkwo, E. C., Bicer, Y., & Al-Ansari, T. (2021). A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7, 1962-1985.
  • Ammonia’s Potential Role in a Low-Carbon Economy. (t.y.). Arrival Date 14 November 2024, from https://www.everycrsreport.com/reports/IF12273.html
  • Berwal, P., Kumar, S., & Khandelwal, B. (2021). A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion. Journal of the Energy Institute, 99, 273-298. https://doi.org/10.1016/j.joei.2021.10.001
  • Chai, W. S., Bao, Y., Jin, P., Tang, G., & Zhou, L. (2021). A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renewable and Sustainable Energy Reviews, 147, 111254.
  • Chehade, G., & Dincer, I. (2021). Progress in green ammonia production as potential carbon-free fuel. Fuel, 299, 120845. https://doi.org/10.1016/j.fuel.2021.120845
  • Díaz-Motta, A., Díaz-González, F., & Villa-Arrieta, M. (2023). Energy sustainability assessment of offshore wind-powered ammonia. Journal of Cleaner Production, 420, 138419. https://doi.org/10.1016/j.jclepro.2023.138419
  • DNV. (2023). Energy transition outlook 2023- Maritime Forecast to 2050. DNV.
  • Drazdauskas, M., & Lebedevas, S. (2024). Optimization of Combustion Cycle Energy Efficiency and Exhaust Gas Emissions of Marine Dual-Fuel Engine by Intensifying Ammonia Injection. Journal of Marine Science and Engineering, 12(2), Article 2. https://doi.org/10.3390/jmse12020309
  • Elçiçek, H. (2024). Bibliometric analysis on hydrogen and ammonia: a comparative evaluation for achieving IMO’s decarbonization targets. International Journal of Environmental Science and Technology, 1-22.
  • EMSA. (t.y.). The world merchant fleet—Statistics from Equasis. Geliş tarihi 12 Kasım 2024, gönderen https://www.emsa.europa.eu/publications/reports/item/472-annualstatistical-report-on-the-world-merchant-statistics-from-equasisics-fromequasis.html
  • Fasihi, M., Weiss, R., Savolainen, J., & Breyer, C. (2021). Global potential of green ammonia based on hybrid PV-wind power plants. Applied Energy, 294, 116170. https://doi.org/10.1016/j.apenergy.2020.116170
  • Gilberg, M. R., & Seeley, N. J. (1982). Liquid ammonia as a solvent and reagent in conservation. Studies in Conservation, 27(1), 38-44. https://doi.org/10.1179/sic.1982.27.1.38
  • Global ammonia annual production capacity. (t.y.). Statista. Access Date 14 November 2024, from https://www.statista.com/statistics/1065865/ammonia-production-capacity-globally/
  • Hatfield, O. (November 2020). Review of global ammonia supply. AEA Conference.
  • Herbinet, O., Bartocci, P., & Grinberg Dana, A. (2022a). On the use of ammonia as a fuel – A perspective. Fuel Communications, 11, 100064. https://doi.org/10.1016/j.jfueco.2022.100064
  • Herbinet, O., Bartocci, P., & Grinberg Dana, A. (2022b). On the use of ammonia as a fuel – A perspective. Fuel Communications, 11, 100064. https://doi.org/10.1016/j.jfueco.2022.100064
  • Hu, Z., Yin, Z., An, Y., & Pei, Y. (2023). Ammonia as fuel for future diesel engines. IntechOpen. https://doi.org/10.5772/intechopen.1002059
  • Huo, R., Li, M., Zheng, W., Ming, P., Li, B., Zhang, C., & Li, Z. (2024). Feasibility of new energy hybrid vehicles that use ammonia as the primary source of energy. Energy Conversion and Management, 317, 118819.
  • Iwamoto, I., Kurniawan, A., Hasegawa, H., Kashiwaya, Y., Nomura, T., & Akiyama, T. (2022). Reduction Behaviors and Generated Phases of Iron Ores using Ammonia as Reducing Agent. ISIJ International, 62(12), 2483-2490. https://doi.org/10.2355/isijinternational.ISIJINT-2022-155
  • Jamrozik, A., & Tutak, W. (2024). The impact of ammonia and hydrogen additives on the combustion characteristics, performance, stability and emissions of an industrial DF diesel engine. Applied Thermal Engineering, 257, 124189.
  • Jiang, K., Yu, H., Chen, L., Fang, M., Azzi, M., Cottrell, A., & Li, K. (2020). An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology. Applied Energy, 260, 114316. https://doi.org/10.1016/j.apenergy.2019.114316
  • Kakavand, A., Sayadi, S., Tsatsaronis, G., & Behbahaninia, A. (2023). Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran. International Journal of Hydrogen Energy, 48(38), 14170-14191. https://doi.org/10.1016/j.ijhydene.2022.12.285
  • Khaksar, S. A. N., Rahimpour, H. R., & Rahimpour, M. R. (2024). Chapter Eleven—Ammonia storage and transportation. İçinde A. Basile & M. R. Rahimpour (Ed.), Progresses in Ammonia: Science, Technology and Membranes (ss. 251-270). Elsevier. https://doi.org/10.1016/B978-0-323-88516-4.00011-1
  • Kurien, C., & Mittal, M. (2022). Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Conversion and Management, 251, 114990.
  • Maxwell, G. R. (Ed.). (2004). Uses of Ammonia. Içinde Synthetic Nitrogen Products: A Practical Guide to the Products and Processes (ss. 199-203). Springer US. https://doi.org/10.1007/0-306-48639-3_7
  • Morgan, E., Manwell, J., & McGowan, J. (2014). Wind-powered ammonia fuel production for remote islands: A case study. Renewable Energy, 72, 51-61. https://doi.org/10.1016/j.renene.2014.06.034
  • Nadimi, E., Przybyła, G., Emberson, D., Løvås, T., Ziółkowski, Ł., & Adamczyk, W. (2022). Effects of using ammonia as a primary fuel on engine performance and emissions in an ammonia/biodiesel dual-fuel CI engine. International Journal of Energy Research, 46(11), 15347-15361. https://doi.org/10.1002/er.8235
  • Okumuş, F., Kanberoğlu, B., Gonca, G., Kökkülünk, G., Aydın, Z., & Kaya, C. (2024). The effects of ammonia addition on the emission and performance characteristics of a diesel engine with variable compression ratio and injection timing. International Journal of Hydrogen Energy, 64, 186-195. https://doi.org/10.1016/j.ijhydene.2024.03.206
  • Pawar, N. D., Heinrichs, H. U., Winkler, C., Heuser, P.-M., Ryberg, S. D., Robinius, M., & Stolten, D. (2021). Potential of green ammonia production in India. International Journal of Hydrogen Energy, 46(54), 27247-27267. https://doi.org/10.1016/j.ijhydene.2021.05.203
  • Pearson, A. (2008). Refrigeration with ammonia. International Journal of Refrigeration, 31(4), 545-551. https://doi.org/10.1016/j.ijrefrig.2007.11.011
  • Rony, Z. I., Mofijur, M., Hasan, M. M., Rasul, M. G., Jahirul, M. I., Ahmed, S. F., ... & Show, P. L. (2023). Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel, 338, 127220.
  • Reiter, A. J., & Kong, S.-C. (2008). Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions. Energy & Fuels, 22(5), 2963-2971. https://doi.org/10.1021/ef800140f
  • Ritchie, H., & Roser, M. (2024). Cars, planes, trains: Where do CO₂ emissions from transport come from? Our World in Data. https://ourworldindata.org/co2-emissions-from-transport
  • Rivarolo, M., Riveros-Godoy, G., Magistri, L., & Massardo, A. F. (2019). Clean Hydrogen and Ammonia Synthesis in Paraguay from the Itaipu 14 GW Hydroelectric Plant. ChemEngineering, 3(4), Article 4. https://doi.org/10.3390/chemengineering3040087
  • Ryu, K., Zacharakis-Jutz, G. E., & Kong, S.-C. (2014). Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine. Applied Energy, 116, 206-215. https://doi.org/10.1016/j.apenergy.2013.11.067
  • Shamsi, M., Karami, B., Cheraghdar, A., Mousavian, S., Makki, M., & Rooeentan, S. (2024). Evaluation of an environmentally-friendly poly-generation system driven by geothermal energy for green ammonia production. Fuel, 365, 131037. https://doi.org/10.1016/j.fuel.2024.131037
  • Swotinsky, R. B., & Chase, K. H. (1990). Health effects of exposure to ammonia: Scant information. American Journal of Industrial Medicine, 17(4), 515-521. https://doi.org/10.1002/ajim.4700170409
  • Tornatore, C., Marchitto, L., Sabia, P., & De Joannon, M. (2022). Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives. Frontiers in Mechanical Engineering, 8. https://doi.org/10.3389/fmech.2022.944201
  • Valera-Medina, A., Amer-Hatem, F., Azad, A. K., Dedoussi, I. C., De Joannon, M., Fernandes, R. X., ... & Costa, M. (2021). Review on ammonia as a potential fuel: from synthesis to economics. Energy & Fuels, 35(9), 6964-7029.
  • Wang, Y., & Wright, L. A. (2021). A comparative review of alternative fuels for the maritime sector: Economic, technology, and policy challenges for clean energy implementation. World, 2(4), 456-481.
  • Wang, B., Wang, H., Hu, D., Yang, C., Duan, B., & Wang, Y. (2023). Study on the performance of premixed natural gas/ammonia engine with diesel ignition. Energy, 271, 127056. https://doi.org/10.1016/j.energy.2023.127056
  • Wang, B., Yang, C., Wang, H., Hu, D., & Wang, Y. (2023). Effect of Diesel-Ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance. Fuel, 331, 125865.
  • Wang, N., Li, T., Guo, X., Wu, Z., Huang, S., Zhou, X., Li, S., & Chen, R. (2024). Laminar burning characteristics of ammonia and hydrogen blends at elevated initial pressures up to 2.5 MPa. Chemical Engineering Journal, 157283.
  • Wang, X., Bu, H., Chen, H., Liu, J., Chen, Z., & Gao, J. (2024). Numerical investigation of diesel spray combustion characteristics in the ammonia/air atmosphere. Journal of the Energy Institute, 116, 101718. https://doi.org/10.1016/j.joei.2024.101718
  • Wang, Y., Zhou, X., & Liu, L. (2021). Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine. International journal of hydrogen energy, 46(27), 14805-14812.
  • Wei, X., Gao, Y., Zhao, H., Li, Y., & Yang, Q. (2024). Numerical study on laminar burning velocity and ignition delay time of ammonia/methanol mixtures. International Journal of Hydrogen Energy, 82, 673-684. https://doi.org/10.1016/j.ijhydene.2024.07.461
  • Xiao, H., & Li, H. (2022). Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/air premixed flames. Combustion and Flame, 245, 112372. https://doi.org/10.1016/j.combustflame.2022.112372
  • Xiao, H., Lai, S., Valera‐Medina, A., Li, J., Liu, J., & Fu, H. (2020). Experimental and modeling study on ignition delay of ammonia/methane fuels. International Journal of Energy Research, 44(8), 6939-6949.
  • Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297, 126651.
  • Zeng, W., Sun, W., Guo, L., Zhang, H., Yan, Y., Lin, S., Zhu, G., Jiang, M., & Yu, C. (2024). Optical investigation on effects of diesel injection strategy on ammonia/diesel dual fuel combustion characteristics and flame development. Fuel, 363, 131027. https://doi.org/10.1016/j.fuel.2024.131027
  • Zhang, H., Wang, L., Van Herle, J., Maréchal, F., & Desideri, U. (2020). Techno-economic comparison of green ammonia production processes. Applied Energy, 259, 114135. https://doi.org/10.1016/j.apenergy.2019.114135.

A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION

Year 2024, Volume: 6 Issue: 2, 27 - 34, 30.12.2024
https://doi.org/10.47512/meujmaf.1589195

Abstract

While the maritime transportation sector plays a critical role in the global economy, it also significantly contributes to greenhouse gas emissions. This study examines the energy efficiency, technical feasibility, and environmental impacts of ammonia as an alternative fuel in maritime transportation. The contributions of regulatory initiatives, such as the IMO's Energy Efficiency Existing Ship Index (EEXI) and the EU's FuelEU Maritime initiative, in promoting the use of low-carbon fuels to reduce emissions are discussed. The study evaluates the chemical and physical properties of ammonia, challenges associated with its combustion and production processes, with a focus on integrating renewable energy sources for green ammonia production. Findings suggest that ammonia's low reactivity and wide availability make it a promising sustainable fuel. However, overcoming challenges such as combustion difficulties and toxicity will require technological advancements. This comprehensive analysis provides an in-depth perspective on the potential contributions of ammonia to achieving decarbonization goals in the maritime sector, as well as the obstacles that must be addressed.

References

  • Asman, W. A., Sutton, M. A., & Schjørring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. The New Phytologist, 139(1), 27-48.
  • Al-Enazi, A., Okonkwo, E. C., Bicer, Y., & Al-Ansari, T. (2021). A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7, 1962-1985.
  • Ammonia’s Potential Role in a Low-Carbon Economy. (t.y.). Arrival Date 14 November 2024, from https://www.everycrsreport.com/reports/IF12273.html
  • Berwal, P., Kumar, S., & Khandelwal, B. (2021). A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion. Journal of the Energy Institute, 99, 273-298. https://doi.org/10.1016/j.joei.2021.10.001
  • Chai, W. S., Bao, Y., Jin, P., Tang, G., & Zhou, L. (2021). A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renewable and Sustainable Energy Reviews, 147, 111254.
  • Chehade, G., & Dincer, I. (2021). Progress in green ammonia production as potential carbon-free fuel. Fuel, 299, 120845. https://doi.org/10.1016/j.fuel.2021.120845
  • Díaz-Motta, A., Díaz-González, F., & Villa-Arrieta, M. (2023). Energy sustainability assessment of offshore wind-powered ammonia. Journal of Cleaner Production, 420, 138419. https://doi.org/10.1016/j.jclepro.2023.138419
  • DNV. (2023). Energy transition outlook 2023- Maritime Forecast to 2050. DNV.
  • Drazdauskas, M., & Lebedevas, S. (2024). Optimization of Combustion Cycle Energy Efficiency and Exhaust Gas Emissions of Marine Dual-Fuel Engine by Intensifying Ammonia Injection. Journal of Marine Science and Engineering, 12(2), Article 2. https://doi.org/10.3390/jmse12020309
  • Elçiçek, H. (2024). Bibliometric analysis on hydrogen and ammonia: a comparative evaluation for achieving IMO’s decarbonization targets. International Journal of Environmental Science and Technology, 1-22.
  • EMSA. (t.y.). The world merchant fleet—Statistics from Equasis. Geliş tarihi 12 Kasım 2024, gönderen https://www.emsa.europa.eu/publications/reports/item/472-annualstatistical-report-on-the-world-merchant-statistics-from-equasisics-fromequasis.html
  • Fasihi, M., Weiss, R., Savolainen, J., & Breyer, C. (2021). Global potential of green ammonia based on hybrid PV-wind power plants. Applied Energy, 294, 116170. https://doi.org/10.1016/j.apenergy.2020.116170
  • Gilberg, M. R., & Seeley, N. J. (1982). Liquid ammonia as a solvent and reagent in conservation. Studies in Conservation, 27(1), 38-44. https://doi.org/10.1179/sic.1982.27.1.38
  • Global ammonia annual production capacity. (t.y.). Statista. Access Date 14 November 2024, from https://www.statista.com/statistics/1065865/ammonia-production-capacity-globally/
  • Hatfield, O. (November 2020). Review of global ammonia supply. AEA Conference.
  • Herbinet, O., Bartocci, P., & Grinberg Dana, A. (2022a). On the use of ammonia as a fuel – A perspective. Fuel Communications, 11, 100064. https://doi.org/10.1016/j.jfueco.2022.100064
  • Herbinet, O., Bartocci, P., & Grinberg Dana, A. (2022b). On the use of ammonia as a fuel – A perspective. Fuel Communications, 11, 100064. https://doi.org/10.1016/j.jfueco.2022.100064
  • Hu, Z., Yin, Z., An, Y., & Pei, Y. (2023). Ammonia as fuel for future diesel engines. IntechOpen. https://doi.org/10.5772/intechopen.1002059
  • Huo, R., Li, M., Zheng, W., Ming, P., Li, B., Zhang, C., & Li, Z. (2024). Feasibility of new energy hybrid vehicles that use ammonia as the primary source of energy. Energy Conversion and Management, 317, 118819.
  • Iwamoto, I., Kurniawan, A., Hasegawa, H., Kashiwaya, Y., Nomura, T., & Akiyama, T. (2022). Reduction Behaviors and Generated Phases of Iron Ores using Ammonia as Reducing Agent. ISIJ International, 62(12), 2483-2490. https://doi.org/10.2355/isijinternational.ISIJINT-2022-155
  • Jamrozik, A., & Tutak, W. (2024). The impact of ammonia and hydrogen additives on the combustion characteristics, performance, stability and emissions of an industrial DF diesel engine. Applied Thermal Engineering, 257, 124189.
  • Jiang, K., Yu, H., Chen, L., Fang, M., Azzi, M., Cottrell, A., & Li, K. (2020). An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology. Applied Energy, 260, 114316. https://doi.org/10.1016/j.apenergy.2019.114316
  • Kakavand, A., Sayadi, S., Tsatsaronis, G., & Behbahaninia, A. (2023). Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran. International Journal of Hydrogen Energy, 48(38), 14170-14191. https://doi.org/10.1016/j.ijhydene.2022.12.285
  • Khaksar, S. A. N., Rahimpour, H. R., & Rahimpour, M. R. (2024). Chapter Eleven—Ammonia storage and transportation. İçinde A. Basile & M. R. Rahimpour (Ed.), Progresses in Ammonia: Science, Technology and Membranes (ss. 251-270). Elsevier. https://doi.org/10.1016/B978-0-323-88516-4.00011-1
  • Kurien, C., & Mittal, M. (2022). Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Conversion and Management, 251, 114990.
  • Maxwell, G. R. (Ed.). (2004). Uses of Ammonia. Içinde Synthetic Nitrogen Products: A Practical Guide to the Products and Processes (ss. 199-203). Springer US. https://doi.org/10.1007/0-306-48639-3_7
  • Morgan, E., Manwell, J., & McGowan, J. (2014). Wind-powered ammonia fuel production for remote islands: A case study. Renewable Energy, 72, 51-61. https://doi.org/10.1016/j.renene.2014.06.034
  • Nadimi, E., Przybyła, G., Emberson, D., Løvås, T., Ziółkowski, Ł., & Adamczyk, W. (2022). Effects of using ammonia as a primary fuel on engine performance and emissions in an ammonia/biodiesel dual-fuel CI engine. International Journal of Energy Research, 46(11), 15347-15361. https://doi.org/10.1002/er.8235
  • Okumuş, F., Kanberoğlu, B., Gonca, G., Kökkülünk, G., Aydın, Z., & Kaya, C. (2024). The effects of ammonia addition on the emission and performance characteristics of a diesel engine with variable compression ratio and injection timing. International Journal of Hydrogen Energy, 64, 186-195. https://doi.org/10.1016/j.ijhydene.2024.03.206
  • Pawar, N. D., Heinrichs, H. U., Winkler, C., Heuser, P.-M., Ryberg, S. D., Robinius, M., & Stolten, D. (2021). Potential of green ammonia production in India. International Journal of Hydrogen Energy, 46(54), 27247-27267. https://doi.org/10.1016/j.ijhydene.2021.05.203
  • Pearson, A. (2008). Refrigeration with ammonia. International Journal of Refrigeration, 31(4), 545-551. https://doi.org/10.1016/j.ijrefrig.2007.11.011
  • Rony, Z. I., Mofijur, M., Hasan, M. M., Rasul, M. G., Jahirul, M. I., Ahmed, S. F., ... & Show, P. L. (2023). Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel, 338, 127220.
  • Reiter, A. J., & Kong, S.-C. (2008). Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions. Energy & Fuels, 22(5), 2963-2971. https://doi.org/10.1021/ef800140f
  • Ritchie, H., & Roser, M. (2024). Cars, planes, trains: Where do CO₂ emissions from transport come from? Our World in Data. https://ourworldindata.org/co2-emissions-from-transport
  • Rivarolo, M., Riveros-Godoy, G., Magistri, L., & Massardo, A. F. (2019). Clean Hydrogen and Ammonia Synthesis in Paraguay from the Itaipu 14 GW Hydroelectric Plant. ChemEngineering, 3(4), Article 4. https://doi.org/10.3390/chemengineering3040087
  • Ryu, K., Zacharakis-Jutz, G. E., & Kong, S.-C. (2014). Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine. Applied Energy, 116, 206-215. https://doi.org/10.1016/j.apenergy.2013.11.067
  • Shamsi, M., Karami, B., Cheraghdar, A., Mousavian, S., Makki, M., & Rooeentan, S. (2024). Evaluation of an environmentally-friendly poly-generation system driven by geothermal energy for green ammonia production. Fuel, 365, 131037. https://doi.org/10.1016/j.fuel.2024.131037
  • Swotinsky, R. B., & Chase, K. H. (1990). Health effects of exposure to ammonia: Scant information. American Journal of Industrial Medicine, 17(4), 515-521. https://doi.org/10.1002/ajim.4700170409
  • Tornatore, C., Marchitto, L., Sabia, P., & De Joannon, M. (2022). Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives. Frontiers in Mechanical Engineering, 8. https://doi.org/10.3389/fmech.2022.944201
  • Valera-Medina, A., Amer-Hatem, F., Azad, A. K., Dedoussi, I. C., De Joannon, M., Fernandes, R. X., ... & Costa, M. (2021). Review on ammonia as a potential fuel: from synthesis to economics. Energy & Fuels, 35(9), 6964-7029.
  • Wang, Y., & Wright, L. A. (2021). A comparative review of alternative fuels for the maritime sector: Economic, technology, and policy challenges for clean energy implementation. World, 2(4), 456-481.
  • Wang, B., Wang, H., Hu, D., Yang, C., Duan, B., & Wang, Y. (2023). Study on the performance of premixed natural gas/ammonia engine with diesel ignition. Energy, 271, 127056. https://doi.org/10.1016/j.energy.2023.127056
  • Wang, B., Yang, C., Wang, H., Hu, D., & Wang, Y. (2023). Effect of Diesel-Ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance. Fuel, 331, 125865.
  • Wang, N., Li, T., Guo, X., Wu, Z., Huang, S., Zhou, X., Li, S., & Chen, R. (2024). Laminar burning characteristics of ammonia and hydrogen blends at elevated initial pressures up to 2.5 MPa. Chemical Engineering Journal, 157283.
  • Wang, X., Bu, H., Chen, H., Liu, J., Chen, Z., & Gao, J. (2024). Numerical investigation of diesel spray combustion characteristics in the ammonia/air atmosphere. Journal of the Energy Institute, 116, 101718. https://doi.org/10.1016/j.joei.2024.101718
  • Wang, Y., Zhou, X., & Liu, L. (2021). Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine. International journal of hydrogen energy, 46(27), 14805-14812.
  • Wei, X., Gao, Y., Zhao, H., Li, Y., & Yang, Q. (2024). Numerical study on laminar burning velocity and ignition delay time of ammonia/methanol mixtures. International Journal of Hydrogen Energy, 82, 673-684. https://doi.org/10.1016/j.ijhydene.2024.07.461
  • Xiao, H., & Li, H. (2022). Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/air premixed flames. Combustion and Flame, 245, 112372. https://doi.org/10.1016/j.combustflame.2022.112372
  • Xiao, H., Lai, S., Valera‐Medina, A., Li, J., Liu, J., & Fu, H. (2020). Experimental and modeling study on ignition delay of ammonia/methane fuels. International Journal of Energy Research, 44(8), 6939-6949.
  • Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297, 126651.
  • Zeng, W., Sun, W., Guo, L., Zhang, H., Yan, Y., Lin, S., Zhu, G., Jiang, M., & Yu, C. (2024). Optical investigation on effects of diesel injection strategy on ammonia/diesel dual fuel combustion characteristics and flame development. Fuel, 363, 131027. https://doi.org/10.1016/j.fuel.2024.131027
  • Zhang, H., Wang, L., Van Herle, J., Maréchal, F., & Desideri, U. (2020). Techno-economic comparison of green ammonia production processes. Applied Energy, 259, 114135. https://doi.org/10.1016/j.apenergy.2019.114135.
There are 52 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Review Articles
Authors

Fatih Okumuş 0000-0001-8414-5802

Engin Kanun 0000-0002-2369-5322

Publication Date December 30, 2024
Submission Date November 21, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Okumuş, F., & Kanun, E. (2024). A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION. Mersin University Journal of Maritime Faculty, 6(2), 27-34. https://doi.org/10.47512/meujmaf.1589195
AMA Okumuş F, Kanun E. A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION. MEUJMAF. December 2024;6(2):27-34. doi:10.47512/meujmaf.1589195
Chicago Okumuş, Fatih, and Engin Kanun. “A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty 6, no. 2 (December 2024): 27-34. https://doi.org/10.47512/meujmaf.1589195.
EndNote Okumuş F, Kanun E (December 1, 2024) A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION. Mersin University Journal of Maritime Faculty 6 2 27–34.
IEEE F. Okumuş and E. Kanun, “A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION”, MEUJMAF, vol. 6, no. 2, pp. 27–34, 2024, doi: 10.47512/meujmaf.1589195.
ISNAD Okumuş, Fatih - Kanun, Engin. “A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty 6/2 (December 2024), 27-34. https://doi.org/10.47512/meujmaf.1589195.
JAMA Okumuş F, Kanun E. A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION. MEUJMAF. 2024;6:27–34.
MLA Okumuş, Fatih and Engin Kanun. “A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty, vol. 6, no. 2, 2024, pp. 27-34, doi:10.47512/meujmaf.1589195.
Vancouver Okumuş F, Kanun E. A REVIEW OF AMMONIA AS A SUSTAINABLE FUEL FOR MARITIME TRANSPORTATION. MEUJMAF. 2024;6(2):27-34.

download

Mersin University Journal of Maritime Faculty is licenced under a Creative Commons Attribution-ShareAlike 4.0 International License.