Review Article
BibTex RIS Cite

Year 2025, Volume: 3 Issue: 2, 196 - 220, 30.09.2025
https://doi.org/10.69510/mipos.1684741

Abstract

References

  • Adeyanju, C. T., & Olatunji, O. A. (2022). Migration of Nigerians to Canada for higher education: Student visa as a pathway to permanent residence. International Migration & Integration, 23, 105–124. https://doi.org/10.1007/s12134-021-00810-8
  • Ahmad, Q. K., (2003). Regional cooperation in flood management in the Ganges-Brahmaputra-Meghna region: Bangladesh perspective. Natural Hazards, 28, 191–198. https://doi.org/10.1023/A:1021186203100
  • Al-haddad, R. E., & Rakshit, P. V. (2023). Finding home: Participatory geospatial mapping with Rohingya refugees. Applied Geography, 161, 103136. https://doi.org/10.1016/j.apgeog.2023.103136
  • Alam, A., Sammonds, P., & Ahmed, B. (2020). Cyclone risk assessment of the cox’s bazar district and rohingya refugee camps in southeast Bangladesh. Science of The Total Environment, 704, 135360. https://doi.org/10.1016/j.scitotenv.2019.135360
  • Ali, S., Ahmad, S., Usama, M., Islam, R., Shadab, A., Deolia, R. K., Kumar, J., Rastegar, A., Mohammadi, A. A., Khurshid, S., Oskoei, V., & Nazari, S. A. (2024). Geographical analysis of fluoride and nitrate and its proba- bilistic health risk assessment utilizing monte carlo simulation and GIS in potable water in rural areas of Mathura region, Uttar Pradesh, northern India. Heliyon, 10, e37250. https://doi.org/10.1016/j.heliyon.2024.e37250
  • Alonso-Canas, I., & Chuvieco, E. (2015). Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sensing of Environment, 163, 140–152. https://doi.org/10.1016/j.rse.2015.03.011
  • Amos, C., Petropoulos, G. P., & Ferentinos, K. P. (2019). Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. International Journal of Remote Sensing, 40, 905–930. https://doi.org/10.1080/01431161.2018.1519284
  • Asadollah, S. B. H. S., Jodar-Abellan, A., & Pardo, M. A. (2024). Optimizing machine learning for agricultural productivity: A novel approach with RScv and remote sensing data over Europe. Agricultural Systems, 218, 103955. https://doi.org/10.1016/j.agsy.2024.103955
  • Atmaja, T., Setiawati, M. D., Kurisu, K., & Fukushi, K. (2024). Advancing coastal flood risk prediction utilizing a GeoAI approach by considering mangroves as an Eco-DRR strategy. Hydrology, 11(12), 198. https://doi.org/10.3390/hydrology11120198
  • Aung, T. S. (2021). Satellite analysis of the environmental impacts of armed- conflict in rakhine, Myanmar. Science of the Total Environment, 781, 146758. https://doi.org/10.1016/j.scitotenv.2021.146758
  • Ayyildiz, E., Erdogan, M., & Taskin Gumus, A. (2021). A pythagorean fuzzy number-based integration of ahp and waspas methods for refugee camp location selection problem: A real case study for istanbul, turkey. Neural Computing and Applications, 33, 15751–15768. https://doi.org/10.1007/s00521-021-06195-0
  • Bartram, D. (2015). Forced migration and “rejected alternatives”: A conceptual refinement. Journal of Immigrant & Refugee Studies, 13(4), 439–456. https://doi.org/10.1080/15562948.2015.1030489
  • Beck, R. A. (2003). Remote sensing and GIS as counterterrorism tools in the Afghanistan War: A case study of the Zhawar Kili region. The Professional Geographer, 55(2), 170–179. https://doi.org/10.1111/0033-0124.5502005
  • Bennett, M. M., Gleason, C. J., Tellman, B., Alvarez Leon, L. F., Friedrich, H. K., Ovienmhada, U., & Mathews, A. J. (2024). Bringing satellites down to earth: Six steps to more ethical remote sensing. Global Environmental Change Advances, 2, 100003. https://doi.org/10.1016/j.gecadv.2023.100003
  • Bethel, J. W., Foreman, A. N., & Burke, S. C. (2011). Disaster preparedness among medically vulnerable populations. American Journal of Preventive Medicine, 40, 139–143. https://doi.org/10.1016/j.amepre.2010.10.020
  • Betts, A. (2016). Survival migration: Failed governance and the crisis of displacement. Cornell Scholarship Online, https://doi.org/10.7591/cornell/9780801451065.001.0001
  • Bjorgo, E. (2000). Using very high spatial resolution multispectral satellite sensor imagery to monitor refugee camps. International Journal of Remote Sensing, 21, 611–616. https://doi.org/10.1080/014311600210786
  • Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (2014). At risk: Natural hazards, people’s vulnerability and disasters. Routledge. https://doi.org/10.4324/9780203714775
  • Brown, O. (2007). Climate change and forced migration: Observations, pro- jections and implications. Technical Report. Human Development Report Office (HDRO), United Nations Development Programme. https://hdr.undp.org/system/files/documents/brownoli.pdf
  • Buhaug, H., & Lujala, P. (2005). Accounting for scale: Measuring geography in quantitative studies of civil war. Political Geography, 24, 399–418. https://doi.org/10.1016/j.polgeo.2005.01.006
  • Chatziparaschis, D., Lagoudakis, M. G., & Partsinevelos, P. (2020). Aerial and ground robot collaboration for autonomous mapping in search and rescue missions. Drones, 4(4), 79. https://doi.org/10.3390/drones4040079
  • Chen, X., Chen, F., Cui, F., & Lei, W. (2023). Spatial heterogeneity of sustainable land use in the Guangdong–Hong Kong–Macao Greater Bay Area in the context of the carbon cycle: GIS-Based big data analysis. Sustainability, 15(2), 1715. https://doi.org/10.3390/su15021715
  • Chen, G., Zhou, Y., Voogt, J. A., & Stokes, E. C. (2024). Remote sensing of diverse urban environments: From the single city to multiple cities. Remote Sensing of Environment, 305, 114108. https://doi.org/10.1016/j.rse.2024.114108
  • Chen, H., Yang, N., Song, X., Lu, C., Lu, M., Chen, T., & Deng, S. (2025). A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning. Agricultural Water Management, 308, 109303. https://doi.org/10.1016/j.agwat.2025.109303
  • Chen, Y. (2022). Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA) techniques. Journal of Hydrology, 612, 128268. https://doi.org/10.1016/j.jhydrol.2022.128268
  • Cho, Y., Shin, M., Man, K. L., & Kim, M. (2025). SafeWitness: Crowdsensing-based geofencing approach for dynamic disaster risk detection. Fractal and Fractional, 9(3), 156. https://doi.org/10.3390/fractalfract9030156
  • Cinnamon, J. (2020). Humanitarian mapping. In A. Kobayashi (Ed.), International encyclopedia of human geography (2nd ed., pp. 121–128). Elsevier
  • Conigliani, C., Costantini, V., & Finardi, G. (2021). Climate-related natural disasters and forced migration: A spatial regression analysis. Spatial Economic Analysis, 17(3), 416–439. https://doi.org/10.1080/17421772.2021.1995620
  • Crawley, H., & Jones, K. (2020). Beyond here and there: (Re)conceptualising migrant journeys and the ‘in-between.’ Journal of Ethnic and Migration Studies, 47(14), 3226–3242. https://doi.org/10.1080/1369183X.2020.1804190
  • Crooks, A. T., & Wise, S. (2013). GIS and agent-based models for humanitarian assistance. Computers, Environment and Urban Systems, 41, 100–111. https://doi.org/10.1016/j.compenvurbsys.2013.05.003
  • Dermatis, Z., Kalligosfyris, C., Kalamara, E., & Anastasiou, A. (2024). Mapping EU member states’ quality of life during COVID-19 pandemic crisis. Economies, 12(7), 158. https://doi.org/10.3390/economies12070158
  • Diehr, J., Ogunyiola, A., & Dada, O. (2025). Artificial intelligence and machine learning-powered GIS for proactive disaster resilience in a changing climate. Annals of GIS, 31(2), 287–300. https://doi.org/10.1080/19475683.2025.2473596
  • Dou, H., Xu, Y., Lebedev, S., Chagas de Melo, B., van der Hilst, R. D., Wang, B., & Wang, W. (2024). The upper mantle beneath asia from seismic tomography, with inferences for the mechanisms of tectonics, seismicity, and magmatism. Earth-Science Reviews, 255, 104841. https://doi.org/10.1016/j.earscirev.2024.104841
  • Dun, O. V., & Gemenne, F. (2008). Defining environmental migration. Forced Migration Review, 1–2.
  • Erdal, M. B., & Oeppen, C. (2017). Forced to leave? The discursive and analytical significance of describing migration as forced and voluntary. Journal of Ethnic and Migration Studies, 44(6), 981–998. https://doi.org/10.1080/1369183X.2017.1384149
  • Fang, J., Hu, J., Shi, X., & Zhao, L. (2019). Assessing disaster impacts and response using social media data in china: A case study of 2016 wuhan rainstorm. International Journal of Disaster Risk Reduction, 34, 275–282. https://doi.org/10.1016/j.ijdrr.2018.11.027
  • Fatah, K. K., Mustafa, Y. T., & Hassan, I. O. (2024). Groundwater potential mapping in arid and semi-arid regions of Kurdistan region of Iraq: A geoinformatics-based machine learning approach. Groundwater for Sustainable Development, 27, 101337. https://doi.org/10.1016/j.gsd.2024.101337
  • Foster, H. D. (1986). Disaster planning: A synopsis. Interdisciplinary Science Reviews, 11(4), 359–376. https://doi.org/10.1179/isr.1986.11.4.359
  • Gao, H. O., & Klein, R. A. (2011). Environmental equity in funding decisions of the clean air school bus program: The case of New York state. Transportation Research Part D: Transport and Environment, 16, 10–14. https://doi.org/10.1016/j.trd.2010.08.001
  • Giada, S., De Groeve, T., Ehrlich, D., & Soille, P. (2003). Information extraction from very high resolution satellite imagery over Lukole refugee camp, Tanzania. International Journal of Remote Sensing, 24, 4251–4266. https://doi.org/10.1080/0143116021000035021
  • Gizelis, T. I., Pickering, S., & Urdal, H. (2021). Conflict on the urban fringe: Urbanization, environmental stress, and urban unrest in Africa. Political Geography, 86, 102357. https://doi.org/10.1016/j.polgeo.2021.102357
  • Gorsevski, V., Geores, M., & Kasischke, E. (2013). Human dimensions of land use and land cover change related to civil unrest in the Imatong Mountains of South Sudan. Applied Geography, 38, 64–75. https://doi.org/10.1016/j.apgeog.2012.11.019
  • Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252, 351–366. https://doi.org/10.1016/j.ejor.2015.12.035
  • Hamilton, S. E. (2005). Volunteers in disaster response: The American Red Cross. Journal of Aggression, Maltreatment & Trauma, 10(1–2), 621–632. https://doi.org/10.1300/J146v10n01_20
  • Hassan, M. M., Hasan, I., Southworth, J., & Loboda, T. (2022). Mapping fire-impacted refugee camps using the integration of field data and remote sensing approaches. International Journal of Applied Earth Observation and Geoinformation, 115, 103120. https://doi.org/10.1016/j.jag.2022.103120
  • Hassan, M. M., Ash, K., Abedin, J., Paul, B. K., & Southworth, J. (2020). A quantitative framework for analyzing spatial dynamics of flood events: A case study of Super Cyclone Amphan. Remote Sensing, 12(20), 3454. https://doi.org/10.3390/rs12203454
  • Haworth, B. T. (2017). Implications of volunteered geographic information for disaster management and GIScience: A more complex world of volunteered geography. Annals of the American Association of Geographers, 108(1), 226–240. https://doi.org/10.1080/24694452.2017.1321979
  • He, C., & Hu, D. (2025). Social media analytics for disaster response: Classification and geospatial visualization framework. Applied Sciences, 15(8), 4330. https://doi.org/10.3390/app15084330
  • Hirsch, Z. M., Porter, J. R., Buresch, J. M., Medgyesi, D. N., Shu, E. G., & Hauer, M. E. (2024). A multi-hazard approach to climate migration: Testing the intersection of climate hazards, population change, and location desirability from 2000 to 2020. Climate, 12(9), 140. https://doi.org/10.3390/cli12090140
  • Hossain, F., Kamal, A. S. M. M., Sadeak, S., & Gazi, M. Y. (2023). Quantitative soil erosion risk assessment due to rapid urbanization in the Cox’s Bazar district and Rohingya refugee camps in Bangladesh. Stochastic Environmental Research and Risk Assessment, 37, 989–1006. https://doi.org/10.21203/rs.3.rs-1485047/v1
  • Huber, M. T. (2010). Hyphenated geographies: The deindustrialization of nature‐society geography. Geographical Review, 100(1), 74–89. https://doi.org/10.1111/j.1931-0846.2010.00007.x
  • Hugo, G., Abbasi-Shavazi, M. J., & Sadeghi, R. (2012). Refugee movement and development – Afghan refugees in Iran. Migration and Development, 1(2), 261–279. https://doi.org/10.1080/21632324.2012.749741
  • Imtiaz, F., Farooque, A. A., Randhawa, G. S., Garmdareh, S. E. H., Wang, X., Esau, T. J., Acharya, B., & Sadiq, R. (2025). Remote sensing-based spa- tiotemporal dynamics of agricultural drought on Prince Edward Island using Google Earth Engine. Ecological Informatics, 103073. https://doi.org/10.1016/j.ecoinf.2025.103073
  • Islam, M. T., Sikder, S. K., Charlesworth, M., & Rabbi, A. (2023). Spatial transition dynamics of urbanization and Rohingya refugees’ settlements in Bangladesh. Land Use Policy, 133, 106874. https://doi.org/10.1016/j.landusepol.2023.106874
  • Kemarau, R. A., Suab, S. A., Eboy, O. V., Sa’adi, Z., Echoh, D. U., & Sakawi, Z. (2025). Integrative approaches in remote sensing and GIS for assessing climate change impacts across Malaysian ecosystems and societies. Sustainability, 17(4), 1344. https://doi.org/10.3390/su17041344
  • Kemper, T., Jenerowicz, M., Pesaresi, M., & Soille, P. (2011). Enumeration of dwellings in darfur camps from geoeye-1 satellite images using mathematical morphology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 8–15. https://doi.org/10.1109/JSTARS.2010.2053700
  • Killeen, J., Jaupi, L., & Barrett, B. (2022). Impact assessment of humanitarian demining using object-based peri-urban land cover classification and morphological building detection from VHR Worldview imagery. Remote Sensing Applications: Society and Environment, 27, 100766. https://doi.org/10.1016/j.rsase.2022.100766
  • Knoth, C., & Pebesma, E. (2017). Detecting dwelling destruction in Darfur through object-based change analysis of very high-resolution imagery. International Journal of Remote Sensing, 38, 273–295. https://doi.org/10.1080/01431161.2016.1266105
  • Kostelnick, J. C., & Hoeniges, L. C. (2018). Map symbols for crisis mapping: Challenges and prospects. The Cartographic Journal, 56(1), 59–72. https://doi.org/10.1080/00087041.2017.1413810
  • Lee, E. K., Yang, A. Y., Pietz, F., & Benecke, B. (2011). Public health, emergency response, and medical preparedness I: Medical surge. In Public health, emergency response, and medical preparedness I (Chapter 1, pp. 1–10). https://doi.org/10.1002/9780470400531.eorms1041
  • Lemenkova, P. (2022a). Mapping submarine geomorphology of the philippine and mariana trenches by an automated approach using GMT scripts. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 76, 258–266. https://doi.org/10.2478/prolas-2022-0039
  • Lemenkova, P. (2022b). A script-driven approach to mapping satellite-derived topography and gravity data over the Zagros Fold-and-Thrust Belt, Iran. Artificial Satellites, 57, 110–137. https://doi.org/10.2478/arsa-2022-0006
  • Lemenkova, P. (2022c). Handling dataset with geophysical and geological variables on the Bolivian Andes by the GMT scripts. Data, 7. https://doi.org/10.3390/data7060074
  • Lemenkova, P. (2022d). Mapping climate parameters over the territory of Botswana using GMT and gridded surface data from TerraClimate. ISPRS International Journal of Geo-Information, 11(9), 473. https://doi.org/10.3390/ijgi11090473
  • Lemenkova, P. (2024a). Deep learning methods of satellite image processing for monitoring of flood dynamics in the Ganges Delta, Bangladesh. Water, 16, 1141. https://doi.org/10.3390/w16081141
  • Lemenkova, P. (2024b). Seismic moment tensor solutions and geophysical settings in the Philippine Sea basin mapped by GMT. Revista Geofísica, 70, 17-34. https://doi.org/10.35424/rgf.i70.939
  • Lemenkova, P. (2024c). Artificial neural networks for mapping coastal lagoon of Chilika Lake, India, using Earth observation data. Journal of Marine Science and Engineering, 12(5), 709; https://doi.org/10.3390/jmse12050709
  • Lemenkova, P. (2024d). Artificial intelligence for computational remote sensing: Quantifying patterns of land cover types around Cheetham Wetlands, Port Phillip Bay, Australia. Journal of Marine Science and Engineering, 12(8), 1279. https://doi.org/10.3390/jmse12081279
  • Lemenkova, P. (2024e). Support vector machine algorithm for mapping land cover dynamics in Senegal, West Africa, using Earth observation data. Earth, 5, 420–462. https://doi.org/10.3390/earth5030024
  • Lemenkova, P. (2024f). Mapping coastal regions of Guinea-Bissau for analysis of mangrove dynamics using remote sensing data. Transylvanian Review of Systematical and Ecological Research, 26(2), 17–30. https://doi.org/10.2478/trser-2024-0008
  • Lemenkova, P. (2025a). Improving bimonthly landscape monitoring in Morocco, North Africa, by integrating machine learning with GRASS GIS. Geomatics, 5(1), 5. https://doi.org/10.3390/geomatics5010005
  • Lemenkova, P. (2025b). Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python. Examples and Counterexamples, 7, 2025, 100180. https://doi.org/10.1016/j.exco.2025.100180
  • Lemenkova, P. (2025c). Land cover analysis in the Yangtze River Basin for detection of wetland agriculture and urban dynamics in Wuhan area (China). Transylvanian Review of Systematical and Ecological Research, 27(1), 1–16. https://doi.org/10.2478/trser-2025-0001
  • Lemenkova, P., & Debeir, O. (2023). Computing vegetation indices from the satellite images using GRASS GIS scripts for monitoring mangrove forests in the coastal landscapes of Niger Delta, Nigeria. Journal of Marine Science and Engineering, 11(4), 871. https://doi.org/10.3390/jmse11040871
  • Li, M., Shi, X., Li, X., Ma, W., He, J., & Liu, T. (2019). Epidemic forest: A spatiotemporal model for communicable diseases. Annals of the American Association of Geographers, 109(3), 812–836. https://doi.org/10.1080/24694452.2018.1511413
  • Lindh, P., & Lemenkova, P. (2023a). Seismic monitoring of strength in stabilized foundations by p-wave reflection and downhole geophysical logging for drill borehole core. Journal of the Mechanical Behavior of Materials, 32, 20220290. https://doi.org/10.1515/jmbm-2022-0290
  • Lindh, P., & Lemenkova, P. (2023b). Optimized workflow framework in construction projects to control the environmental properties of soil. Algorithms, 16(6), 303. https://doi.org/10.3390/a16060303
  • Liu, J. J. (2024). Middle-class youth fleeing Nigeria: Rethinking African survival migration through the Japa phenomenon. Journal of Ethnic and Migration Studies, 50(16), 4021–4040. https://doi.org/10.1080/1369183X.2024.2323049
  • Liu, Z., Chen, L., Ma, M., Yang, A., Zhong, Z., & Jing, N. (2024). An efficient visual exploration approach of geospatial vector big data on the web map. Information Systems, 121, 102333. https://doi.org/10.1016/j.is.2023.102333
  • Liu, J., Li, M., Li, R., Shalamzari, M. J., Ren, Y., & Silakhori, E. (2025). Comprehensive assessment of drought susceptibility using predictive modeling, climate change projections, and land use dynamics for sustainable management. Land, 14(2), 337. https://doi.org/10.3390/land14020337
  • Logar, T., Bullock, J., Nemni, E., Bromley, L., Quinn, J.A., & Luengo-Oroz, M. (2020). Pulsesatellite: A tool using human-ai feedback loops for satellite image analysis in humanitarian contexts. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13628–13629. https://doi.org/10.1609/aaai.v34i09.7101
  • Lu, Y., Koperski, K., Kwan, C., & Li, J. (2021). Deep learning for effective refugee tent extraction near Syria– Jordan border. IEEE Geoscience and Remote Sensing Letters, 18, 1342–1346. https://doi.org/10.1109/LGRS.2020.2999354
  • Lu, Y., Zhai, G., & Zhou, S. (2024). An integrated Bayesian networks and Geographic information system (BNs-GIS) approach for flood disaster risk assessment: A case study of Yinchuan, China. Ecological Indicators, 166, 112322. https://doi.org/10.1016/j.ecolind.2024.112322
  • Luo, H., Liao, J., & Shen, G. (2024). Combining environmental-socio-economic data with volunteer geographic information for mapping flood risk zones in Zhengzhou, Henan province, China. International Journal of Disaster Risk Reduction, 111, 104679. https://doi.org/10.1016/j.ijdrr.2024.104679
  • Lysaker, O. (2022). Oceanic cosmopolitanism: The complexity of waiting for future climate refugees. Journal of Global Ethics, 18(3), 349–367. https://doi.org/10.1080/17449626.2022.2105383
  • Ma, M., Wu, Y., Ouyang, X., Chen, L., Li, J., & Jing, N. (2021). Hivision: Rapid visualization of large-scale spatial vector data. Computers & Geosciences, 147, 104665. https://doi.org/10.1016/j.cageo.2020.104665
  • Mattas, C., Karpouzos, D., Georgiou, P., & Tsapanos, T. (2023). Two-dimensional modelling for dam break analysis and flood hazard mapping: A case study of Papadia Dam, Northern Greece. Water, 15(5), 994. https://doi.org/10.3390/w15050994
  • McMichael, C. (2018). Cartographies of disease: Maps, mapping, and medicine. The Cartographic Journal, 55(4), 403–404. https://doi.org/10.1080/00087041.2018.1545461
  • Mesmar, S., Talhouk, R., Akik, C., Olivier, P., Elhajj, I.H., Elbassuoni, S., Armoush, S., Kalot, J., Balaam, M., Germani, A., & Ghattas, H. (2016). The impact of digital technology on health of populations affected by humanitarian crises: Recent innovations and current gaps. Journal of Public Health Policy, 37, 167–200. https://doi.org/10.1057/s41271-016-0040-1
  • Mihai, G., Alexandru, A.-M., Nita, I.-A., & Birsan, M.-V. (2022). Climate change in the provenance regions of Romania over the last 70 years: Implications for forest management. Forests, 13(8), 1203. https://doi.org/10.3390/f13081203
  • Mirza, M. M. Q. (2011). Climate change, flooding in south asia and implications. Regional Environmental Change, 11, 95–107. https://doi.org/10.1007/s10113-010-0184-7
  • Mori, K., Ugai, K., Nonami, Y., Kirimura, T., Kondo, C., Nakamura, T., Motoki, E., & Kaji, H. (2007). Health needs of patients with chronic diseases who lived through the great hanshin earthquake. Disaster Management & Response, 5, 8–13. https://doi.org/10.1016/j.dmr.2006.11.002
  • Morrow, B. H. (1999). Identifying and mapping community vulnerability. Disasters, 23, 1–18. https://doi.org/10.1111/1467-7717.00102
  • Nelson, E. L., Saade, D. R., & Gregg Greenough, P. (2020). Gender-based vulnerability: Combining pareto ranking and spatial statistics to model gender-based vulnerability in Rohingya refugee settlements in Bangladesh. International Journal of Health Geographics, 19, 20. https://doi.org/10.1186/s12942-020-00215-3
  • Nieto, C. E., Martínez-Graña, A. M., & Encinas, B. (2023). Analysis of the risk of coastal flooding due to rising sea levels in Ría of Arosa (Pontevedra, Spain). Applied Sciences, 13(22), 12099. https://doi.org/10.3390/app132212099
  • Nyimbili, P. H., Erden, T., & Karaman, H. (2018). Integration of GIS, AHP and topsis for earthquake hazard analysis. Natural Hazards, 92, 1523–1546. https://doi.org/10.1007/s11069-018-3262-7
  • Plank, S. (2014). Rapid damage assessment by means of multi-temporal SAR — a comprehensive review and outlook to Sentinel-1. Remote Sensing, 6(6), 4870–4906. https://doi.org/10.3390/rs6064870
  • Pultar, E., Raubal, M., Cova, T. J., & Goodchild, M. F. (2009). Dynamic GIS case studies: Wildfire evacuation and volunteered geographic information. Transactions in GIS, 13, 85–104. https://doi.org/10.1111/j.1467-9671.2009.01157.x
  • Purwanto, Hamdan, A., Putra, A. K., Aripriharta, Tan, I., & Farihah, S. N. (2024). Geo-virtual reality (gvr): The creative materials to construct spatial thinking skills using virtual learning based metaverse technology. Thinking Skills and Creativity, 54, 101664. https://doi.org/10.1016/j.tsc.2024.101664
  • Qin, H., & Ye, Y. (2025). Key technologies for constructing ecological corridors and resilience protection and disaster reduction in nearshore waters. Sustainability, 17(12), 5234. https://doi.org/10.3390/su17125234
  • Quader, M. A., Dey, H., Malak, M. A., & Sajib, A. M. (2021). Rohingya refugee flooding and changes of the physical and social landscape in Ukhiya, Bangladesh. Environment, Development and Sustainability, 23, 4634–4658. https://doi.org/10.1007/s10668-020-00792-0
  • Ren, F., Li, Y., Zheng, Z., Yan, H., & Du, Q. (2021). Online emergency mapping based on disaster scenario and data integration. International Journal of Image and Data Fusion, 12(4), 282–300. https://doi.org/10.1080/19479832.2021.1963329
  • Safabakhshpachehkenari, M., Tsubomatsu, H., & Tonooka, H. (2025). Japan’s urban-environmental exposures: A tripartite analysis of city shrinkage, SAR-based deep learning versus forward modeling in inundation mapping, and future flood schemes. Urban Science, 9(3), 71. https://doi.org/10.3390/urbansci9030071
  • Sanyal, R. (2012). Refugees and the city: An urban discussion. Geography Compass, 6, 633–644. https://doi.org/10.1111/gec3.12010
  • Sheppard, E. (1995). GIS and society: Towards a research agenda. Cartography and Geographic Information Systems, 22(1), 5–16. https://doi.org/10.1559/152304095782540555
  • Shube, H., Karuppannan, S., Haji, M., Paneerselvam, B., Kawo, N., Mechal, A., & Fekadu, A. (2024). Appraising groundwater quality and probabilistic human health risks from fluoride-enriched groundwater using the pollution index of groundwater (PIG) and GIS: A case study of adama town and its vicinities in the central main ethiopian rift valley. RSC Advances, 14, 30272–30285. https://doi.org/10.1039/D4RA02890B
  • Scott, S. (2006). The social morphology of skilled migration: The case of the British middle class in Paris. Journal of Ethnic and Migration Studies, 32(7), 1105–1129. https://doi.org/10.1080/13691830600821802
  • Sumarga, E., Sholihah, A., Srigati, F. A. E., Nabila, S., Azzahra, P. R., & Rabbani, N. P. (2023). Quantification of ecosystem services from urban mangrove forest: A case study in Angke Kapuk Jakarta. Forests, 14(9), 1796. https://doi.org/10.3390/f14091796
  • Tzavella, K., Fekete, A., & Fiedrich, F. (2018). Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany. Natural Hazards, 91, 29–57. https://doi.org/10.1007/s11069-017-3102-1
  • Tzavella, K., Skopeliti, A., & Fekete, A. (2022). Volunteered geographic information use in crisis, emergency and disaster management: A scoping review and a web atlas. Geo-Spatial Information Science, 27(2), 423–454. https://doi.org/10.1080/10095020.2022.2139642
  • Verkuyten, M., Mepham, K., & Kros, M. (2017). Public attitudes towards support for migrants: The importance of perceived voluntary and involuntary migration. Ethnic and Racial Studies, 41(5), 901–918. https://doi.org/10.1080/01419870.2017.1367021
  • Wen, T., Li, C., Liu, J., & Wang, P. (2025). Risk assessment of dynamic diffusion of urban non-point source pollution under extreme rainfall. Toxics, 13(5), 385. https://doi.org/10.3390/toxics13050385
  • Westrope, C., Banick, R., & Levine, M. (2014). Groundtruthing OpenStreetMap building damage assessment. Procedia Engineering, 78, 29–39. https://doi.org/10.1016/j.proeng.2014.07.035
  • Wu, J., Feng, T., Jia, P., & Li, G. (2024). Spatial allocation of heavy commercial vehicles parking areas through geo-fencing. Journal of Transport Geography, 117, 103876. https://doi.org/10.1016/j.jtrangeo.2024.103876
  • Xiahou, X., Ding, X., Chen, P., Qian, Y., & Jin, H. (2025). Digital technologies in urban regeneration: A systematic literature review from the perspectives of stakeholders, scales, and stages. Buildings, 15(14), 2455. https://doi.org/10.3390/buildings15142455
  • Yang, A., Fan, H., Jia, Q., Ma, M., Zhong, Z., Li, J., & Jing, N. (2024). How do contributions of organizations impact data inequality in OpenStreetMap? Computers, Environment and Urban Systems, 109, 102077. https://doi.org/10.1016/j.compenvurbsys.2024.102077
  • Younes, A., Kotb, K. M., Abu Ghazala, M. O., & Elkadeem, M. R. (2022). Spatial suitability analysis for site selection of refugee camps using hybrid GIS and fuzzy AHP approach: The case of Kenya. International Journal of Disaster Risk Reduction, 77, 103062. https://doi.org/10.1016/j.ijdrr.2022.103062
  • Zheng, Y., Dong, W., Zhiping, Y., Lu, Y., Zhang, X., Dong, Y., & Sun, F. (2024). A new attention-based deep metric model for crop type mapping in complex agricultural landscapes using multisource remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 134, 104204. https://doi.org/10.1016/j.jag.2024.104204
  • Zhu, J., Zou, Y., Chen, D., Zhang, W., Chen, Y., & Cheng, W. (2024). Analyzing the spatiotemporal dynamics of drought in Shaanxi Province. Atmosphere, 15(11), 1264. https://doi.org/10.3390/atmos15111264

Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review

Year 2025, Volume: 3 Issue: 2, 196 - 220, 30.09.2025
https://doi.org/10.69510/mipos.1684741

Abstract

The migration crisis is generated by mass movements of population within or outside the national borders of a country. Triggers to this phenomenon include either sudden events, such as natural catastrophes (floods, earthquakes) or gradual social pressure (wars and civil unrest). This paper aims to analyse the effective cartographic methods of mapping changing patterns of human movements. Replaced settlements are visible from space and can be mapped effectively using satellite images processed by Geo-Information Systems (GIS). This review study presents a thorough in-depth analysis of the significant role of the ML and GIS and their incorporating into crisis control and monitoring migration situations. Machine Learning (ML) hold a significant role in processing geospatial referenced data which is essential for mapping humanitarian crisis using Earth observation data. This review study presents a thorough in-depth analysis of the significant role of the ML and GIS and their incorporating into crisis control and monitoring migration situations. Understanding the reasons of migratory movements is supported by the interrogation of the trajectories which can be detected from space for mapping the ways of the migration's paths. A systematic literature review was performed, synthesizing findings from existing approaches, geospatial analysis and field observations related to humanitarian mapping. This study reveal that integrated use of ML, GIS and EO data can facilitate mapping the endangered areas for sustainable planning during crisis events across multiple spatiotemporal scales.

References

  • Adeyanju, C. T., & Olatunji, O. A. (2022). Migration of Nigerians to Canada for higher education: Student visa as a pathway to permanent residence. International Migration & Integration, 23, 105–124. https://doi.org/10.1007/s12134-021-00810-8
  • Ahmad, Q. K., (2003). Regional cooperation in flood management in the Ganges-Brahmaputra-Meghna region: Bangladesh perspective. Natural Hazards, 28, 191–198. https://doi.org/10.1023/A:1021186203100
  • Al-haddad, R. E., & Rakshit, P. V. (2023). Finding home: Participatory geospatial mapping with Rohingya refugees. Applied Geography, 161, 103136. https://doi.org/10.1016/j.apgeog.2023.103136
  • Alam, A., Sammonds, P., & Ahmed, B. (2020). Cyclone risk assessment of the cox’s bazar district and rohingya refugee camps in southeast Bangladesh. Science of The Total Environment, 704, 135360. https://doi.org/10.1016/j.scitotenv.2019.135360
  • Ali, S., Ahmad, S., Usama, M., Islam, R., Shadab, A., Deolia, R. K., Kumar, J., Rastegar, A., Mohammadi, A. A., Khurshid, S., Oskoei, V., & Nazari, S. A. (2024). Geographical analysis of fluoride and nitrate and its proba- bilistic health risk assessment utilizing monte carlo simulation and GIS in potable water in rural areas of Mathura region, Uttar Pradesh, northern India. Heliyon, 10, e37250. https://doi.org/10.1016/j.heliyon.2024.e37250
  • Alonso-Canas, I., & Chuvieco, E. (2015). Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sensing of Environment, 163, 140–152. https://doi.org/10.1016/j.rse.2015.03.011
  • Amos, C., Petropoulos, G. P., & Ferentinos, K. P. (2019). Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. International Journal of Remote Sensing, 40, 905–930. https://doi.org/10.1080/01431161.2018.1519284
  • Asadollah, S. B. H. S., Jodar-Abellan, A., & Pardo, M. A. (2024). Optimizing machine learning for agricultural productivity: A novel approach with RScv and remote sensing data over Europe. Agricultural Systems, 218, 103955. https://doi.org/10.1016/j.agsy.2024.103955
  • Atmaja, T., Setiawati, M. D., Kurisu, K., & Fukushi, K. (2024). Advancing coastal flood risk prediction utilizing a GeoAI approach by considering mangroves as an Eco-DRR strategy. Hydrology, 11(12), 198. https://doi.org/10.3390/hydrology11120198
  • Aung, T. S. (2021). Satellite analysis of the environmental impacts of armed- conflict in rakhine, Myanmar. Science of the Total Environment, 781, 146758. https://doi.org/10.1016/j.scitotenv.2021.146758
  • Ayyildiz, E., Erdogan, M., & Taskin Gumus, A. (2021). A pythagorean fuzzy number-based integration of ahp and waspas methods for refugee camp location selection problem: A real case study for istanbul, turkey. Neural Computing and Applications, 33, 15751–15768. https://doi.org/10.1007/s00521-021-06195-0
  • Bartram, D. (2015). Forced migration and “rejected alternatives”: A conceptual refinement. Journal of Immigrant & Refugee Studies, 13(4), 439–456. https://doi.org/10.1080/15562948.2015.1030489
  • Beck, R. A. (2003). Remote sensing and GIS as counterterrorism tools in the Afghanistan War: A case study of the Zhawar Kili region. The Professional Geographer, 55(2), 170–179. https://doi.org/10.1111/0033-0124.5502005
  • Bennett, M. M., Gleason, C. J., Tellman, B., Alvarez Leon, L. F., Friedrich, H. K., Ovienmhada, U., & Mathews, A. J. (2024). Bringing satellites down to earth: Six steps to more ethical remote sensing. Global Environmental Change Advances, 2, 100003. https://doi.org/10.1016/j.gecadv.2023.100003
  • Bethel, J. W., Foreman, A. N., & Burke, S. C. (2011). Disaster preparedness among medically vulnerable populations. American Journal of Preventive Medicine, 40, 139–143. https://doi.org/10.1016/j.amepre.2010.10.020
  • Betts, A. (2016). Survival migration: Failed governance and the crisis of displacement. Cornell Scholarship Online, https://doi.org/10.7591/cornell/9780801451065.001.0001
  • Bjorgo, E. (2000). Using very high spatial resolution multispectral satellite sensor imagery to monitor refugee camps. International Journal of Remote Sensing, 21, 611–616. https://doi.org/10.1080/014311600210786
  • Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (2014). At risk: Natural hazards, people’s vulnerability and disasters. Routledge. https://doi.org/10.4324/9780203714775
  • Brown, O. (2007). Climate change and forced migration: Observations, pro- jections and implications. Technical Report. Human Development Report Office (HDRO), United Nations Development Programme. https://hdr.undp.org/system/files/documents/brownoli.pdf
  • Buhaug, H., & Lujala, P. (2005). Accounting for scale: Measuring geography in quantitative studies of civil war. Political Geography, 24, 399–418. https://doi.org/10.1016/j.polgeo.2005.01.006
  • Chatziparaschis, D., Lagoudakis, M. G., & Partsinevelos, P. (2020). Aerial and ground robot collaboration for autonomous mapping in search and rescue missions. Drones, 4(4), 79. https://doi.org/10.3390/drones4040079
  • Chen, X., Chen, F., Cui, F., & Lei, W. (2023). Spatial heterogeneity of sustainable land use in the Guangdong–Hong Kong–Macao Greater Bay Area in the context of the carbon cycle: GIS-Based big data analysis. Sustainability, 15(2), 1715. https://doi.org/10.3390/su15021715
  • Chen, G., Zhou, Y., Voogt, J. A., & Stokes, E. C. (2024). Remote sensing of diverse urban environments: From the single city to multiple cities. Remote Sensing of Environment, 305, 114108. https://doi.org/10.1016/j.rse.2024.114108
  • Chen, H., Yang, N., Song, X., Lu, C., Lu, M., Chen, T., & Deng, S. (2025). A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning. Agricultural Water Management, 308, 109303. https://doi.org/10.1016/j.agwat.2025.109303
  • Chen, Y. (2022). Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA) techniques. Journal of Hydrology, 612, 128268. https://doi.org/10.1016/j.jhydrol.2022.128268
  • Cho, Y., Shin, M., Man, K. L., & Kim, M. (2025). SafeWitness: Crowdsensing-based geofencing approach for dynamic disaster risk detection. Fractal and Fractional, 9(3), 156. https://doi.org/10.3390/fractalfract9030156
  • Cinnamon, J. (2020). Humanitarian mapping. In A. Kobayashi (Ed.), International encyclopedia of human geography (2nd ed., pp. 121–128). Elsevier
  • Conigliani, C., Costantini, V., & Finardi, G. (2021). Climate-related natural disasters and forced migration: A spatial regression analysis. Spatial Economic Analysis, 17(3), 416–439. https://doi.org/10.1080/17421772.2021.1995620
  • Crawley, H., & Jones, K. (2020). Beyond here and there: (Re)conceptualising migrant journeys and the ‘in-between.’ Journal of Ethnic and Migration Studies, 47(14), 3226–3242. https://doi.org/10.1080/1369183X.2020.1804190
  • Crooks, A. T., & Wise, S. (2013). GIS and agent-based models for humanitarian assistance. Computers, Environment and Urban Systems, 41, 100–111. https://doi.org/10.1016/j.compenvurbsys.2013.05.003
  • Dermatis, Z., Kalligosfyris, C., Kalamara, E., & Anastasiou, A. (2024). Mapping EU member states’ quality of life during COVID-19 pandemic crisis. Economies, 12(7), 158. https://doi.org/10.3390/economies12070158
  • Diehr, J., Ogunyiola, A., & Dada, O. (2025). Artificial intelligence and machine learning-powered GIS for proactive disaster resilience in a changing climate. Annals of GIS, 31(2), 287–300. https://doi.org/10.1080/19475683.2025.2473596
  • Dou, H., Xu, Y., Lebedev, S., Chagas de Melo, B., van der Hilst, R. D., Wang, B., & Wang, W. (2024). The upper mantle beneath asia from seismic tomography, with inferences for the mechanisms of tectonics, seismicity, and magmatism. Earth-Science Reviews, 255, 104841. https://doi.org/10.1016/j.earscirev.2024.104841
  • Dun, O. V., & Gemenne, F. (2008). Defining environmental migration. Forced Migration Review, 1–2.
  • Erdal, M. B., & Oeppen, C. (2017). Forced to leave? The discursive and analytical significance of describing migration as forced and voluntary. Journal of Ethnic and Migration Studies, 44(6), 981–998. https://doi.org/10.1080/1369183X.2017.1384149
  • Fang, J., Hu, J., Shi, X., & Zhao, L. (2019). Assessing disaster impacts and response using social media data in china: A case study of 2016 wuhan rainstorm. International Journal of Disaster Risk Reduction, 34, 275–282. https://doi.org/10.1016/j.ijdrr.2018.11.027
  • Fatah, K. K., Mustafa, Y. T., & Hassan, I. O. (2024). Groundwater potential mapping in arid and semi-arid regions of Kurdistan region of Iraq: A geoinformatics-based machine learning approach. Groundwater for Sustainable Development, 27, 101337. https://doi.org/10.1016/j.gsd.2024.101337
  • Foster, H. D. (1986). Disaster planning: A synopsis. Interdisciplinary Science Reviews, 11(4), 359–376. https://doi.org/10.1179/isr.1986.11.4.359
  • Gao, H. O., & Klein, R. A. (2011). Environmental equity in funding decisions of the clean air school bus program: The case of New York state. Transportation Research Part D: Transport and Environment, 16, 10–14. https://doi.org/10.1016/j.trd.2010.08.001
  • Giada, S., De Groeve, T., Ehrlich, D., & Soille, P. (2003). Information extraction from very high resolution satellite imagery over Lukole refugee camp, Tanzania. International Journal of Remote Sensing, 24, 4251–4266. https://doi.org/10.1080/0143116021000035021
  • Gizelis, T. I., Pickering, S., & Urdal, H. (2021). Conflict on the urban fringe: Urbanization, environmental stress, and urban unrest in Africa. Political Geography, 86, 102357. https://doi.org/10.1016/j.polgeo.2021.102357
  • Gorsevski, V., Geores, M., & Kasischke, E. (2013). Human dimensions of land use and land cover change related to civil unrest in the Imatong Mountains of South Sudan. Applied Geography, 38, 64–75. https://doi.org/10.1016/j.apgeog.2012.11.019
  • Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252, 351–366. https://doi.org/10.1016/j.ejor.2015.12.035
  • Hamilton, S. E. (2005). Volunteers in disaster response: The American Red Cross. Journal of Aggression, Maltreatment & Trauma, 10(1–2), 621–632. https://doi.org/10.1300/J146v10n01_20
  • Hassan, M. M., Hasan, I., Southworth, J., & Loboda, T. (2022). Mapping fire-impacted refugee camps using the integration of field data and remote sensing approaches. International Journal of Applied Earth Observation and Geoinformation, 115, 103120. https://doi.org/10.1016/j.jag.2022.103120
  • Hassan, M. M., Ash, K., Abedin, J., Paul, B. K., & Southworth, J. (2020). A quantitative framework for analyzing spatial dynamics of flood events: A case study of Super Cyclone Amphan. Remote Sensing, 12(20), 3454. https://doi.org/10.3390/rs12203454
  • Haworth, B. T. (2017). Implications of volunteered geographic information for disaster management and GIScience: A more complex world of volunteered geography. Annals of the American Association of Geographers, 108(1), 226–240. https://doi.org/10.1080/24694452.2017.1321979
  • He, C., & Hu, D. (2025). Social media analytics for disaster response: Classification and geospatial visualization framework. Applied Sciences, 15(8), 4330. https://doi.org/10.3390/app15084330
  • Hirsch, Z. M., Porter, J. R., Buresch, J. M., Medgyesi, D. N., Shu, E. G., & Hauer, M. E. (2024). A multi-hazard approach to climate migration: Testing the intersection of climate hazards, population change, and location desirability from 2000 to 2020. Climate, 12(9), 140. https://doi.org/10.3390/cli12090140
  • Hossain, F., Kamal, A. S. M. M., Sadeak, S., & Gazi, M. Y. (2023). Quantitative soil erosion risk assessment due to rapid urbanization in the Cox’s Bazar district and Rohingya refugee camps in Bangladesh. Stochastic Environmental Research and Risk Assessment, 37, 989–1006. https://doi.org/10.21203/rs.3.rs-1485047/v1
  • Huber, M. T. (2010). Hyphenated geographies: The deindustrialization of nature‐society geography. Geographical Review, 100(1), 74–89. https://doi.org/10.1111/j.1931-0846.2010.00007.x
  • Hugo, G., Abbasi-Shavazi, M. J., & Sadeghi, R. (2012). Refugee movement and development – Afghan refugees in Iran. Migration and Development, 1(2), 261–279. https://doi.org/10.1080/21632324.2012.749741
  • Imtiaz, F., Farooque, A. A., Randhawa, G. S., Garmdareh, S. E. H., Wang, X., Esau, T. J., Acharya, B., & Sadiq, R. (2025). Remote sensing-based spa- tiotemporal dynamics of agricultural drought on Prince Edward Island using Google Earth Engine. Ecological Informatics, 103073. https://doi.org/10.1016/j.ecoinf.2025.103073
  • Islam, M. T., Sikder, S. K., Charlesworth, M., & Rabbi, A. (2023). Spatial transition dynamics of urbanization and Rohingya refugees’ settlements in Bangladesh. Land Use Policy, 133, 106874. https://doi.org/10.1016/j.landusepol.2023.106874
  • Kemarau, R. A., Suab, S. A., Eboy, O. V., Sa’adi, Z., Echoh, D. U., & Sakawi, Z. (2025). Integrative approaches in remote sensing and GIS for assessing climate change impacts across Malaysian ecosystems and societies. Sustainability, 17(4), 1344. https://doi.org/10.3390/su17041344
  • Kemper, T., Jenerowicz, M., Pesaresi, M., & Soille, P. (2011). Enumeration of dwellings in darfur camps from geoeye-1 satellite images using mathematical morphology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 8–15. https://doi.org/10.1109/JSTARS.2010.2053700
  • Killeen, J., Jaupi, L., & Barrett, B. (2022). Impact assessment of humanitarian demining using object-based peri-urban land cover classification and morphological building detection from VHR Worldview imagery. Remote Sensing Applications: Society and Environment, 27, 100766. https://doi.org/10.1016/j.rsase.2022.100766
  • Knoth, C., & Pebesma, E. (2017). Detecting dwelling destruction in Darfur through object-based change analysis of very high-resolution imagery. International Journal of Remote Sensing, 38, 273–295. https://doi.org/10.1080/01431161.2016.1266105
  • Kostelnick, J. C., & Hoeniges, L. C. (2018). Map symbols for crisis mapping: Challenges and prospects. The Cartographic Journal, 56(1), 59–72. https://doi.org/10.1080/00087041.2017.1413810
  • Lee, E. K., Yang, A. Y., Pietz, F., & Benecke, B. (2011). Public health, emergency response, and medical preparedness I: Medical surge. In Public health, emergency response, and medical preparedness I (Chapter 1, pp. 1–10). https://doi.org/10.1002/9780470400531.eorms1041
  • Lemenkova, P. (2022a). Mapping submarine geomorphology of the philippine and mariana trenches by an automated approach using GMT scripts. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 76, 258–266. https://doi.org/10.2478/prolas-2022-0039
  • Lemenkova, P. (2022b). A script-driven approach to mapping satellite-derived topography and gravity data over the Zagros Fold-and-Thrust Belt, Iran. Artificial Satellites, 57, 110–137. https://doi.org/10.2478/arsa-2022-0006
  • Lemenkova, P. (2022c). Handling dataset with geophysical and geological variables on the Bolivian Andes by the GMT scripts. Data, 7. https://doi.org/10.3390/data7060074
  • Lemenkova, P. (2022d). Mapping climate parameters over the territory of Botswana using GMT and gridded surface data from TerraClimate. ISPRS International Journal of Geo-Information, 11(9), 473. https://doi.org/10.3390/ijgi11090473
  • Lemenkova, P. (2024a). Deep learning methods of satellite image processing for monitoring of flood dynamics in the Ganges Delta, Bangladesh. Water, 16, 1141. https://doi.org/10.3390/w16081141
  • Lemenkova, P. (2024b). Seismic moment tensor solutions and geophysical settings in the Philippine Sea basin mapped by GMT. Revista Geofísica, 70, 17-34. https://doi.org/10.35424/rgf.i70.939
  • Lemenkova, P. (2024c). Artificial neural networks for mapping coastal lagoon of Chilika Lake, India, using Earth observation data. Journal of Marine Science and Engineering, 12(5), 709; https://doi.org/10.3390/jmse12050709
  • Lemenkova, P. (2024d). Artificial intelligence for computational remote sensing: Quantifying patterns of land cover types around Cheetham Wetlands, Port Phillip Bay, Australia. Journal of Marine Science and Engineering, 12(8), 1279. https://doi.org/10.3390/jmse12081279
  • Lemenkova, P. (2024e). Support vector machine algorithm for mapping land cover dynamics in Senegal, West Africa, using Earth observation data. Earth, 5, 420–462. https://doi.org/10.3390/earth5030024
  • Lemenkova, P. (2024f). Mapping coastal regions of Guinea-Bissau for analysis of mangrove dynamics using remote sensing data. Transylvanian Review of Systematical and Ecological Research, 26(2), 17–30. https://doi.org/10.2478/trser-2024-0008
  • Lemenkova, P. (2025a). Improving bimonthly landscape monitoring in Morocco, North Africa, by integrating machine learning with GRASS GIS. Geomatics, 5(1), 5. https://doi.org/10.3390/geomatics5010005
  • Lemenkova, P. (2025b). Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python. Examples and Counterexamples, 7, 2025, 100180. https://doi.org/10.1016/j.exco.2025.100180
  • Lemenkova, P. (2025c). Land cover analysis in the Yangtze River Basin for detection of wetland agriculture and urban dynamics in Wuhan area (China). Transylvanian Review of Systematical and Ecological Research, 27(1), 1–16. https://doi.org/10.2478/trser-2025-0001
  • Lemenkova, P., & Debeir, O. (2023). Computing vegetation indices from the satellite images using GRASS GIS scripts for monitoring mangrove forests in the coastal landscapes of Niger Delta, Nigeria. Journal of Marine Science and Engineering, 11(4), 871. https://doi.org/10.3390/jmse11040871
  • Li, M., Shi, X., Li, X., Ma, W., He, J., & Liu, T. (2019). Epidemic forest: A spatiotemporal model for communicable diseases. Annals of the American Association of Geographers, 109(3), 812–836. https://doi.org/10.1080/24694452.2018.1511413
  • Lindh, P., & Lemenkova, P. (2023a). Seismic monitoring of strength in stabilized foundations by p-wave reflection and downhole geophysical logging for drill borehole core. Journal of the Mechanical Behavior of Materials, 32, 20220290. https://doi.org/10.1515/jmbm-2022-0290
  • Lindh, P., & Lemenkova, P. (2023b). Optimized workflow framework in construction projects to control the environmental properties of soil. Algorithms, 16(6), 303. https://doi.org/10.3390/a16060303
  • Liu, J. J. (2024). Middle-class youth fleeing Nigeria: Rethinking African survival migration through the Japa phenomenon. Journal of Ethnic and Migration Studies, 50(16), 4021–4040. https://doi.org/10.1080/1369183X.2024.2323049
  • Liu, Z., Chen, L., Ma, M., Yang, A., Zhong, Z., & Jing, N. (2024). An efficient visual exploration approach of geospatial vector big data on the web map. Information Systems, 121, 102333. https://doi.org/10.1016/j.is.2023.102333
  • Liu, J., Li, M., Li, R., Shalamzari, M. J., Ren, Y., & Silakhori, E. (2025). Comprehensive assessment of drought susceptibility using predictive modeling, climate change projections, and land use dynamics for sustainable management. Land, 14(2), 337. https://doi.org/10.3390/land14020337
  • Logar, T., Bullock, J., Nemni, E., Bromley, L., Quinn, J.A., & Luengo-Oroz, M. (2020). Pulsesatellite: A tool using human-ai feedback loops for satellite image analysis in humanitarian contexts. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13628–13629. https://doi.org/10.1609/aaai.v34i09.7101
  • Lu, Y., Koperski, K., Kwan, C., & Li, J. (2021). Deep learning for effective refugee tent extraction near Syria– Jordan border. IEEE Geoscience and Remote Sensing Letters, 18, 1342–1346. https://doi.org/10.1109/LGRS.2020.2999354
  • Lu, Y., Zhai, G., & Zhou, S. (2024). An integrated Bayesian networks and Geographic information system (BNs-GIS) approach for flood disaster risk assessment: A case study of Yinchuan, China. Ecological Indicators, 166, 112322. https://doi.org/10.1016/j.ecolind.2024.112322
  • Luo, H., Liao, J., & Shen, G. (2024). Combining environmental-socio-economic data with volunteer geographic information for mapping flood risk zones in Zhengzhou, Henan province, China. International Journal of Disaster Risk Reduction, 111, 104679. https://doi.org/10.1016/j.ijdrr.2024.104679
  • Lysaker, O. (2022). Oceanic cosmopolitanism: The complexity of waiting for future climate refugees. Journal of Global Ethics, 18(3), 349–367. https://doi.org/10.1080/17449626.2022.2105383
  • Ma, M., Wu, Y., Ouyang, X., Chen, L., Li, J., & Jing, N. (2021). Hivision: Rapid visualization of large-scale spatial vector data. Computers & Geosciences, 147, 104665. https://doi.org/10.1016/j.cageo.2020.104665
  • Mattas, C., Karpouzos, D., Georgiou, P., & Tsapanos, T. (2023). Two-dimensional modelling for dam break analysis and flood hazard mapping: A case study of Papadia Dam, Northern Greece. Water, 15(5), 994. https://doi.org/10.3390/w15050994
  • McMichael, C. (2018). Cartographies of disease: Maps, mapping, and medicine. The Cartographic Journal, 55(4), 403–404. https://doi.org/10.1080/00087041.2018.1545461
  • Mesmar, S., Talhouk, R., Akik, C., Olivier, P., Elhajj, I.H., Elbassuoni, S., Armoush, S., Kalot, J., Balaam, M., Germani, A., & Ghattas, H. (2016). The impact of digital technology on health of populations affected by humanitarian crises: Recent innovations and current gaps. Journal of Public Health Policy, 37, 167–200. https://doi.org/10.1057/s41271-016-0040-1
  • Mihai, G., Alexandru, A.-M., Nita, I.-A., & Birsan, M.-V. (2022). Climate change in the provenance regions of Romania over the last 70 years: Implications for forest management. Forests, 13(8), 1203. https://doi.org/10.3390/f13081203
  • Mirza, M. M. Q. (2011). Climate change, flooding in south asia and implications. Regional Environmental Change, 11, 95–107. https://doi.org/10.1007/s10113-010-0184-7
  • Mori, K., Ugai, K., Nonami, Y., Kirimura, T., Kondo, C., Nakamura, T., Motoki, E., & Kaji, H. (2007). Health needs of patients with chronic diseases who lived through the great hanshin earthquake. Disaster Management & Response, 5, 8–13. https://doi.org/10.1016/j.dmr.2006.11.002
  • Morrow, B. H. (1999). Identifying and mapping community vulnerability. Disasters, 23, 1–18. https://doi.org/10.1111/1467-7717.00102
  • Nelson, E. L., Saade, D. R., & Gregg Greenough, P. (2020). Gender-based vulnerability: Combining pareto ranking and spatial statistics to model gender-based vulnerability in Rohingya refugee settlements in Bangladesh. International Journal of Health Geographics, 19, 20. https://doi.org/10.1186/s12942-020-00215-3
  • Nieto, C. E., Martínez-Graña, A. M., & Encinas, B. (2023). Analysis of the risk of coastal flooding due to rising sea levels in Ría of Arosa (Pontevedra, Spain). Applied Sciences, 13(22), 12099. https://doi.org/10.3390/app132212099
  • Nyimbili, P. H., Erden, T., & Karaman, H. (2018). Integration of GIS, AHP and topsis for earthquake hazard analysis. Natural Hazards, 92, 1523–1546. https://doi.org/10.1007/s11069-018-3262-7
  • Plank, S. (2014). Rapid damage assessment by means of multi-temporal SAR — a comprehensive review and outlook to Sentinel-1. Remote Sensing, 6(6), 4870–4906. https://doi.org/10.3390/rs6064870
  • Pultar, E., Raubal, M., Cova, T. J., & Goodchild, M. F. (2009). Dynamic GIS case studies: Wildfire evacuation and volunteered geographic information. Transactions in GIS, 13, 85–104. https://doi.org/10.1111/j.1467-9671.2009.01157.x
  • Purwanto, Hamdan, A., Putra, A. K., Aripriharta, Tan, I., & Farihah, S. N. (2024). Geo-virtual reality (gvr): The creative materials to construct spatial thinking skills using virtual learning based metaverse technology. Thinking Skills and Creativity, 54, 101664. https://doi.org/10.1016/j.tsc.2024.101664
  • Qin, H., & Ye, Y. (2025). Key technologies for constructing ecological corridors and resilience protection and disaster reduction in nearshore waters. Sustainability, 17(12), 5234. https://doi.org/10.3390/su17125234
  • Quader, M. A., Dey, H., Malak, M. A., & Sajib, A. M. (2021). Rohingya refugee flooding and changes of the physical and social landscape in Ukhiya, Bangladesh. Environment, Development and Sustainability, 23, 4634–4658. https://doi.org/10.1007/s10668-020-00792-0
  • Ren, F., Li, Y., Zheng, Z., Yan, H., & Du, Q. (2021). Online emergency mapping based on disaster scenario and data integration. International Journal of Image and Data Fusion, 12(4), 282–300. https://doi.org/10.1080/19479832.2021.1963329
  • Safabakhshpachehkenari, M., Tsubomatsu, H., & Tonooka, H. (2025). Japan’s urban-environmental exposures: A tripartite analysis of city shrinkage, SAR-based deep learning versus forward modeling in inundation mapping, and future flood schemes. Urban Science, 9(3), 71. https://doi.org/10.3390/urbansci9030071
  • Sanyal, R. (2012). Refugees and the city: An urban discussion. Geography Compass, 6, 633–644. https://doi.org/10.1111/gec3.12010
  • Sheppard, E. (1995). GIS and society: Towards a research agenda. Cartography and Geographic Information Systems, 22(1), 5–16. https://doi.org/10.1559/152304095782540555
  • Shube, H., Karuppannan, S., Haji, M., Paneerselvam, B., Kawo, N., Mechal, A., & Fekadu, A. (2024). Appraising groundwater quality and probabilistic human health risks from fluoride-enriched groundwater using the pollution index of groundwater (PIG) and GIS: A case study of adama town and its vicinities in the central main ethiopian rift valley. RSC Advances, 14, 30272–30285. https://doi.org/10.1039/D4RA02890B
  • Scott, S. (2006). The social morphology of skilled migration: The case of the British middle class in Paris. Journal of Ethnic and Migration Studies, 32(7), 1105–1129. https://doi.org/10.1080/13691830600821802
  • Sumarga, E., Sholihah, A., Srigati, F. A. E., Nabila, S., Azzahra, P. R., & Rabbani, N. P. (2023). Quantification of ecosystem services from urban mangrove forest: A case study in Angke Kapuk Jakarta. Forests, 14(9), 1796. https://doi.org/10.3390/f14091796
  • Tzavella, K., Fekete, A., & Fiedrich, F. (2018). Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany. Natural Hazards, 91, 29–57. https://doi.org/10.1007/s11069-017-3102-1
  • Tzavella, K., Skopeliti, A., & Fekete, A. (2022). Volunteered geographic information use in crisis, emergency and disaster management: A scoping review and a web atlas. Geo-Spatial Information Science, 27(2), 423–454. https://doi.org/10.1080/10095020.2022.2139642
  • Verkuyten, M., Mepham, K., & Kros, M. (2017). Public attitudes towards support for migrants: The importance of perceived voluntary and involuntary migration. Ethnic and Racial Studies, 41(5), 901–918. https://doi.org/10.1080/01419870.2017.1367021
  • Wen, T., Li, C., Liu, J., & Wang, P. (2025). Risk assessment of dynamic diffusion of urban non-point source pollution under extreme rainfall. Toxics, 13(5), 385. https://doi.org/10.3390/toxics13050385
  • Westrope, C., Banick, R., & Levine, M. (2014). Groundtruthing OpenStreetMap building damage assessment. Procedia Engineering, 78, 29–39. https://doi.org/10.1016/j.proeng.2014.07.035
  • Wu, J., Feng, T., Jia, P., & Li, G. (2024). Spatial allocation of heavy commercial vehicles parking areas through geo-fencing. Journal of Transport Geography, 117, 103876. https://doi.org/10.1016/j.jtrangeo.2024.103876
  • Xiahou, X., Ding, X., Chen, P., Qian, Y., & Jin, H. (2025). Digital technologies in urban regeneration: A systematic literature review from the perspectives of stakeholders, scales, and stages. Buildings, 15(14), 2455. https://doi.org/10.3390/buildings15142455
  • Yang, A., Fan, H., Jia, Q., Ma, M., Zhong, Z., Li, J., & Jing, N. (2024). How do contributions of organizations impact data inequality in OpenStreetMap? Computers, Environment and Urban Systems, 109, 102077. https://doi.org/10.1016/j.compenvurbsys.2024.102077
  • Younes, A., Kotb, K. M., Abu Ghazala, M. O., & Elkadeem, M. R. (2022). Spatial suitability analysis for site selection of refugee camps using hybrid GIS and fuzzy AHP approach: The case of Kenya. International Journal of Disaster Risk Reduction, 77, 103062. https://doi.org/10.1016/j.ijdrr.2022.103062
  • Zheng, Y., Dong, W., Zhiping, Y., Lu, Y., Zhang, X., Dong, Y., & Sun, F. (2024). A new attention-based deep metric model for crop type mapping in complex agricultural landscapes using multisource remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 134, 104204. https://doi.org/10.1016/j.jag.2024.104204
  • Zhu, J., Zou, Y., Chen, D., Zhang, W., Chen, Y., & Cheng, W. (2024). Analyzing the spatiotemporal dynamics of drought in Shaanxi Province. Atmosphere, 15(11), 1264. https://doi.org/10.3390/atmos15111264
There are 119 citations in total.

Details

Primary Language English
Subjects Environmental Sociology
Journal Section Review Article
Authors

Polina Lemenkova 0000-0002-5759-1089

Early Pub Date September 29, 2025
Publication Date September 30, 2025
Submission Date April 26, 2025
Acceptance Date September 23, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

APA Lemenkova, P. (2025). Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review. Journal of Migration and Political Studies, 3(2), 196-220. https://doi.org/10.69510/mipos.1684741
AMA Lemenkova P. Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review. MIPOS. September 2025;3(2):196-220. doi:10.69510/mipos.1684741
Chicago Lemenkova, Polina. “Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review”. Journal of Migration and Political Studies 3, no. 2 (September 2025): 196-220. https://doi.org/10.69510/mipos.1684741.
EndNote Lemenkova P (September 1, 2025) Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review. Journal of Migration and Political Studies 3 2 196–220.
IEEE P. Lemenkova, “Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review”, MIPOS, vol. 3, no. 2, pp. 196–220, 2025, doi: 10.69510/mipos.1684741.
ISNAD Lemenkova, Polina. “Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review”. Journal of Migration and Political Studies 3/2 (September2025), 196-220. https://doi.org/10.69510/mipos.1684741.
JAMA Lemenkova P. Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review. MIPOS. 2025;3:196–220.
MLA Lemenkova, Polina. “Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review”. Journal of Migration and Political Studies, vol. 3, no. 2, 2025, pp. 196-20, doi:10.69510/mipos.1684741.
Vancouver Lemenkova P. Geo-Information for Humanitarian Mapping and Monitoring Crisis-Affected Regions: A Scoping Review. MIPOS. 2025;3(2):196-220.

INDEXING & ABSTRACTING & ARCHIVING


33473 66ba27515f989.jpg scholar_logo_64dp.png 33474 34276


by-nc.svg Content of this journal is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

Journal of Migration and Political Studies (MIPOS) adheres to the Open Access Policy for the sharing of knowledge.